Structural Features of Polylactide Films Obtained from a Melt and Solution
- Autores: Tertyshnaya Y.V.1,2, Krivandin A.V.1, Shatalova O.V.1
- 
							Afiliações: 
							- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
- Plekhanov Russian University of Economics, Moscow, Russia
 
- Edição: Volume 42, Nº 1 (2023)
- Páginas: 43-49
- Seção: Chemical physics of polymeric materials
- URL: https://cardiosomatics.ru/0207-401X/article/view/674913
- DOI: https://doi.org/10.31857/S0207401X23010120
- EDN: https://elibrary.ru/HQYUOB
- ID: 674913
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The morphology and structure of polylactide film samples obtained from a melt and from a solution in chloroform are studied. The crystallization process of polylactide takes place under nonisothermal conditions. It is determined that the melting and crystallization points of the polylactide sample obtained from the solution are, respectively, 2 and 4°C lower than the sample obtained from the melt. Using optical polarization microscopy, it is shown that the sample obtained from the solution has a spherulite structure, while spherulites are not detected in the polylactide sample obtained from the melt. The X-ray diffraction patterns of the polylactide samples crystallized from the solution and melt are different. Well-defined reflexes characteristic of the crystalline modification of the α-form are recorded on the diffractogram of the sample obtained from the solution. The pressed polylactide sample has an initially X-ray amorphous structure, which partially transforms into a crystalline structure during annealing for 60 min at 90°C. X-ray diffraction analysis revealed differences in the degree of crystallinity over the thickness of the polylactide sample obtained from the solution.
Sobre autores
Yu. Tertyshnaya
Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia; Plekhanov Russian University of Economics, Moscow, Russia
														Email: terj@rambler.ru
				                					                																			                												                								Россия, Москва; Россия, Москва						
A. Krivandin
Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
														Email: terj@rambler.ru
				                					                																			                												                								Россия, Москва						
O. Shatalova
Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
							Autor responsável pela correspondência
							Email: terj@rambler.ru
				                					                																			                												                								Россия, Москва						
Bibliografia
- Nampoothiri K.M., Nair N.R., John R.P. // Bioresour. Technol. 2010. V. 101. P. 8493; https://doi.org/10.1016/j.biortech.2010.05.092
- Тертышная Ю.В., Хватов А.В., Попов А.А. // Хим. физика. 2022. Т. 41. № 2. С. 86; https://doi.org/10.31857/S0207401X22020133
- Xiao L., Wang B., Yang G., Gauther M. Biomedical Science, Engineering and Technology / Ed. Ghista D.N. London, UK: Intech Open, 2012. Ch. 11. P. 247; https://doi.org/10.5772/1020
- Роговина С.З., Алексанян К.В., Владимиров Л.В., Берлин А.А. // Хим. физика. 2019. Т. 38. № 9. С. 39; https://doi.org/10.1134/S0207401X19090097
- Тертышная Ю.В., Лобанов А.В., Хватов А.В. // Хим. физика. 2020. Т. 39. № 11. С. 52; https://doi.org/10.31857/S0207401X20110138
- Попов А.А., Зыкова А.К., Масталыгина Е.Е. // Хим. физика. 2020. Т. 39. № 6. С. 71; https://doi.org/10.31857/S0207401X20060096
- Варьян И.А., Колесникова Н.Н., Попов А.А. // Хим. физика. 2021. Т. 40. № 12. С. 42; https://doi.org/10.31857/S0207401X21120153
- Yasuniwa M., Iura K., Dan Y. // Polymer. 2007. V. 48. P. 5398; https://doi.org/10.1016/j.polymer.2007.07.012
- Vasanthakumari R., Pennings A.J. // Ibid. 1983. V. 24. P. 175.
- Miyata T., Masuko T. // Ibid. 1998. V. 39. P. 5515.
- Wasanasuk K., Tashiro K., Hanesaka M. et al. // Macromolecules. 2011. V. 44. P. 6441.
- Kobayashi J., Asahi T., Ichiki M. et al. // J. Appl. Phys. 1995. V. 77. P. 2957.
- Puiggali J., Ikada Y., Tsuji H., Lotz B. // Polymer. 2000. V. 41. P. 8921.
- Ohtani Y., Okumura K., Kawaguchi A. // J. Macromol. Sci. Phys.: B. 2003. V. 42. P. 875; https://doi.org/10.1081/MB-120021612
- Hoogsten W., Postema A.R., Pennings A.J., Brinke G., Zugenmaier P. // Macromolecules. 1990. V. 23. P. 634.
- Cartier L., Okihara T., Ikada Y., Tsuji H., Puiggali J., Lotz B. // Polymer. 2000. V. 41. P. 8909.
- Wang H., Zhang J., Tashiro K. // Macromolecules. 2017. V. 50. P. 3285.
- Тертышная Ю.В., Карпова С.Г., Шаталова О.В., Кривандин А.В., Шибряева Л.С. // Высокомолекуляр. соединения. Сер. А. 2016. Т. 58. № 1. С. 54; https://doi.org/10.7868/S2308112016010119
- Lim L.-T., Auras R., Rubino M. // Prog. Polym. Sci. 2008. V. 33. P. 820; https://doi.org/10.1016/j.progpolymsci.2008.05.004
- Krivandin A.V., Solov’eva A.B., Glagolev N.N., Shatalova O.V., Kotova S.L. // Polymer. 2003. V. 44. P. 5789.
- Кривандин А.В., Фаткуллина Л.Д., Шаталова О.В., Голощапов А.Н., Бурлакова Е.Б. // Хим. физика. 2013. Т. 32. № 5. С. 91.
- Вайнштейн Б.К. Дифракция рентгеновых лучей на цепных молекулах. М.: Изд-во АН СССР, 1963.
- Lorenzo M.L. // Europ. Polym. J. 2005. V. 41. P. 569; https://doi.org/10.1016/j.eurpolymj.2004.10.020
- Xu J., Guo B.-H., Zhou J.-J., Li L., Wu J., Kowalczuk M. // Polymer. 2005. V. 46. P. 9176.
- Yasuniwa M., Tsubakihara S., Iura K. et al. // Ibid. 2006. V. 47. P. 7554; https://doi.org/. Yasuniwa M., Sakamo K., Ono Y., Kawahara W. // Ibid. 2008. V. 49. P. 1943; https://doi.org/10.1016/j.polymer.2006.08.054
- Yasuniwa M., Sakamo K., Ono Y., Kawahara W. // Ibid. 2008. V. 49. P. 1943; https://doi.org/10.1016/j.polymer.2008.02.034
- Zhang J., Tashiro K., Tsuji H., Domb A.J. // Macromolecules. 2008. V. 4. P. 1352; https://doi.org/10.1021/ma0706071
- Huang Z., Zhong M., Yang H. et al. // Polymers. 2021. V. 13. 3377; https://doi.org/10.3390/polym13193377
- Zhang L., Zhao G., Wang G. // Ibid. 2021. V. 13. 3280; https://doi.org/10.3390/polym13193280
- Hu C., Lv T., Li J., Huang S. et al. // ACS Appl. Polym. Mater. 2019. V. 1. P. 2552; https://doi.org/10.1021/acsapm.9b00722
- Wasanasuk K., Tashiro K. // Polymer. 2011. V. 52. P. 6097; https://doi.org/10.3390/polym13193280
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 





