Determination of the content of FAD cofactor and NAD(P)H-oxidase complexes in mouse splenocytes and Lewis carcinoma cells under conditions of apoptosis by confocal microscopy method
- Autores: Mil E.M.1, Albantova A.A.1, Matienko L.I.1, Goloshchapov A.N.1, Korovin M.A.1, Kuvyrkova V.V.1
- 
							Afiliações: 
							- Emanuel Institute of Biochemical Physics Russian Academy of Sciences
 
- Edição: Volume 43, Nº 11 (2024)
- Páginas: 47-53
- Seção: Chemical physics of biological processes
- URL: https://cardiosomatics.ru/0207-401X/article/view/680977
- DOI: https://doi.org/10.31857/S0207401X24110061
- ID: 680977
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
In this work, using fluorescence and confocal microscopy, we studied the content of the cofactor FAD and enzymatic NAD(P)H-oxidase complexes (with fluorophores AnnexinV-FITC, 7-AAD (7-aminoactinomycin D), EtBr) under conditions of apoptosis caused by sodium anphene with hydrogen peroxide in healthy mouse splenocytes and Lewis carcinoma tumor cells. The use of fluorescence microscopy allows observing and quantifying the apoptotic effect of sodium anphen and hydrogen peroxide, and visualization of metabolic changes in the cell, including increased fluorescence of FAD in tumor cells and NAD(P)H-oxidase complexes in splenocytes. The data obtained indicate the possibility of using sodium anphen in combination with hydrogen peroxide as an antitumor drug acting on certain types of cells.
Palavras-chave
Texto integral
 
												
	                        Sobre autores
E. Mil
Emanuel Institute of Biochemical Physics Russian Academy of Sciences
														Email: albantovaaa@mail.ru
				                					                																			                												                	Rússia, 							Moscow						
A. Albantova
Emanuel Institute of Biochemical Physics Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: albantovaaa@mail.ru
				                					                																			                												                	Rússia, 							Moscow						
L. Matienko
Emanuel Institute of Biochemical Physics Russian Academy of Sciences
														Email: albantovaaa@mail.ru
				                					                																			                												                	Rússia, 							Moscow						
A. Goloshchapov
Emanuel Institute of Biochemical Physics Russian Academy of Sciences
														Email: albantovaaa@mail.ru
				                					                																			                												                	Rússia, 							Moscow						
M. Korovin
Emanuel Institute of Biochemical Physics Russian Academy of Sciences
														Email: albantovaaa@mail.ru
				                					                																			                												                	Rússia, 							Moscow						
V. Kuvyrkova
Emanuel Institute of Biochemical Physics Russian Academy of Sciences
														Email: albantovaaa@mail.ru
				                					                																			                												                	Rússia, 							Moscow						
Bibliografia
- N.V. Beloborodova, General Reanimatology 15, 62 (2019); doi::10.15360/1813-9779-2019-6-62-79
- V.I. Binyukov, E.M. Mil, L.I. Matienko, et al., Micro (MDPI) 3, 382 (2023); htpp//doi.org/10.3390/micro3020026
- L.I. Matienko, E.M. Mil, V.I Binyukov, Russ. J. Phys. Chem. B 14, 559 (2020); https://doi.org/10.1134/S1990793120030227
- J.R. Mcintosh, J. Cell Biol., 153, 25 (2001); https://doi.org/10.1083/jcb.153.6.F25
- N.S. Zakharov, A.N. Popova, Yu.A. Zakharov, et al., Russ. J. Phys. Chem. B 16, 780 (2022); doi::10.1134/s1990793122040170
- V.A. Tkachuk, P.A. Tyurin-Kuzmin, V.V. Belousov, et al., Biological membranes, 29, 21 (2012) (in Russian).
- I.F. Rusina, T.L. Veprintsev, R.F. Vasiliev, Russ. J. Phys. Chem. B 16, 50 (2022); https://doi.org/10.1134/S1990793122010274
- N.Yu. Gerasimov, O.V. Nevrova, I.V. Zhigacheva, et al., Russ. J. Phys. Chem. B 17, 135 (2023); doi::10.1134/S1990793123010049
- R.A. Sadykov, S.L. Khursan, A.A. Sukhanov, et al., Russ. J. Phys. Chem. B 17, 1251 (2023); doi::10.1134/S1990793123060209
- E.M. Mil, V.I. Binyukov, V.N. Erokhin, et al., Cytology 62, 503 (2020) (in Russian); doi::10.31857/S0041377120070032
- V.N. Erokhin, A.V. Krementsova, V.A. Semenov, et al., Bull. Russ. Acad. Sci., Biochemistry No 5, 583 (2020) (in Russian).
- E.M. Mil, V.I. Binyukov, V.N. Erokhin, Dokl. Chem. 482, 598 (2018) (in Russian).
- W. Becker, J. Microscopy 247, 119 (2012); doi::10.1111/j.1365-2818.2012.03618.x
- I.N. Druzhkova, M.M. Lukina, V.V. Dudenkova, et al., Cell Cycle 15, 1257 (2016); doi::10.1080/15384101.2016.1160974
- N.J. Clifton, Methods in molecular biology 412, 273 (2007); doi::10.1007/978-1-59745-467-4_18
- K. Rokutan, T. Kawahara, Y. Kuwano, et al., Antioxid. Redox. Signal 8, 1573 (2006); doi::10.1089/ars.2006.8.1573
- M.W. Ma, Wang J., Zhang Q., et al., Molecular Neurodegeneration No 12, 7 (2017); https://doi.org/10.1186/s13024-017-0150-7
- M.M. Lukina, V.V. Dudenkova, N.I. Ignatova, et al., Biochim. Biophys. Acta - Genetic Subj. 1862, 1693 (2018); doi::10.1016/j.bbagen.2018.04.021
- А.S. Babkina, General Reanimatology 15, 50 (2019); https://doi.org/10.15360/1813-9779-2019-6-50-61
- A. Vermot, I. Petit-Härtlein, S.M.E. Smith, et al., Antioxidants (Basel) 10, 890 (2021); doi::10.3390/antiox10060890
- K. Bedard, K.H. Krause, Physiol. Rev. 87, 245 (2007); doi::10.1152/physrev.00044.2005
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 





