Ion confinement efficiency in a complex plasma of glow discharge
- Autores: Polyakov D.N.1, Shumova V.V.1,2, Vasilyak L.M.1
- 
							Afiliações: 
							- Joint Institute for High Temperatures, Russian Academy of Sciences
- Semenov Institute of Chemical Physics, Russian Academy of Sciences
 
- Edição: Volume 43, Nº 8 (2024)
- Páginas: 109-115
- Seção: ФИЗИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ ХИМИЧЕСКИХ РЕАКЦИЙ
- URL: https://cardiosomatics.ru/0207-401X/article/view/681890
- DOI: https://doi.org/10.31857/S0207401X24080127
- ID: 681890
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The parameters of the plasma of a low-pressure glow discharge in neon with microparticles are determined numerically, at which regions with equal values of the ion confinement efficiency in the cloud of microparticles are realized. It is noted that such features are characteristic of dissipative synergetic systems controlled by feedback. Simulation of a complex glow discharge plasma in neon with microparticles showed that feedback in the plasma is realized through the source of the main losses of its energy a cloud of microparticles. Controlling the discharge parameters by changing the concentration of microparticles in the cloud makes it possible to control the concentration of ions in the plasma.
Texto integral
 
												
	                        Sobre autores
D. Polyakov
Joint Institute for High Temperatures, Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: cryolab@ihed.ras.ru
				                					                																			                												                	Rússia, 							Moscow						
V. Shumova
Joint Institute for High Temperatures, Russian Academy of Sciences; Semenov Institute of Chemical Physics, Russian Academy of Sciences
														Email: cryolab@ihed.ras.ru
				                					                																			                												                	Rússia, 							Moscow; Moscow						
L. Vasilyak
Joint Institute for High Temperatures, Russian Academy of Sciences
														Email: cryolab@ihed.ras.ru
				                					                																			                												                	Rússia, 							Moscow						
Bibliografia
- I. Adamovich, S. Agarwal, E. Ahedo et al., J. Phys. D: Appl. Phys. 55, 373001 (2022). https://doi.org/10.1088/1361-6463/ac5e1c
- F. Schlichting and H. Kersten, EPJ Techn. Instrum. 10, 19 (2023). https://doi.org/10.1140/epjti/s40485-023-00106-4
- D.N. Polyakov, V.V. Shumova, and L.M. Vasilyak, Plasma Sources Sci. Technol. 30, 07LT01 (2021). https://doi.org/10.1088/1361-6595/ac0a46
- V.V. Shumova, D.N. Polyakov, and L.M. Vasilyak, J. Appl. Phys. 128, 053301 (2020). https://doi.org/10.1063/5.0014944
- J. Beckers, J. Berndt, D. Block et al., Phys. Plasmas 30, 120601 (2023). https://doi.org/10.1063/5.0168088
- M.Y. Pustylnik, A.A. Pikalev, A.V. Zobnin, et al., Contribut. Plasma Phys. 61 (10), e202100126 (2021). https://doi.org/10.1002/ctpp.202100126
- G.V. Golubkov, M.I. Manzhelii, A.A. Berlin, A.A. Lushnikov, and L. V. Eppelbaum, Russ. J. Phys. Chem. B 12, 725 (2018). https://doi.org/10.1134/S1990793118040061
- G.V. Golubkov, N.V. Ardelyan, V.L. Bychkov, and K.V. Kosmachevskii, Russ. J. Phys. Chem. B 12, 755 (2018). https://doi.org/10.1134/S1990793118040073
- Y. Chengxun, L. Zhijian, V. L. Bychkov et al., Russ. J. Phys. Chem. B 16(5), 955 (2022). https://doi.org/10.1134/S1990793122050189
- M.G. Golubkov, A.V. Suvorova, A.V. Dmitriev, and G.V. Golubkov, Russ. J. Phys. Chem. B 14, 873 (2020). https://doi.org/10.1134/S1990793120050206
- D.N. Polyakov, V.V. Shumova, and L.M. Vasilyak, Russ. J. Phys. Chem. B 17 (5), 1241 (2023). https://doi.org/10.1134/S1990793123050263
- D.N. Polyakov, L.M. Vasilyak, and V.V. Shumova, Surf. Eng. Appl. Electrochem. 51, 143 (2015). https://doi.org/10.3103/S106837551502012X
- Y. Huttel, Gas-phase synthesis of nanoparticles. – John Wiley & Sons, Weinheim 2017. https://onlinelibrary.wiley.com/doi/book/10.1002/9783527698417
- V.V. Shumova, D.N. Polyakov, and L.M. Vasilyak, Russ. J. Phys. Chem. B 14 (6), 959 (2020). https://doi.org/10.1134/S1990793120060275
- V.N. Mikhalkin, S.I. Sumskoi, A.M. Tereza et al. Russ. J. Phys. Chem. B 16 (4), 629 (2022). https://doi.org/10.1134/S1990793122040261
- V.V. Leschevich, V.V. Martynenko, O.G. Penyazkov, K.L. Sevrouk, and S.I. Shabunya, Shock Waves 26, 657 (2016). https://doi.org/10.1007/s00193-016-0665-9
- G.L. Agafonov, and A.M. Tereza, Russ. J. Phys. Chem. B 9, 92 (2015). https://doi.org/10.1134/S1990793115010145
- S.P. Medvedev, B.E. Gelfand, S.V. Khomik, and G.L. Agafonov, J. Engineer. Phys. and Thermophys. 83, 1170 (2010). https://doi.org/10.1007/s10891-010-0440-1
- V.V. Shumova, D.N. Polyakov, and L.M. Vasilyak, Russ. J. Phys. Chem. B 17 (4), 986 (2023). https://doi.org/10.1134/S1990793123040280
- L.M. Vasilyak, S.P. Vetchinin, D.N. Polyakov, and V.E. Fortov, J. Exp. Theor. Phys. 94 (3), 521 (2002). https://doi.org/10.1134/1.1469151
- D.N. Polyakov, V.V. Shumova, and L.M. Vasilyak, Plasma Sources Sci. Technol. 31, 074001 (2022). https://doi.org/10.1088/1361-6595/ac7c36
- W.M. Farrell, J.E. Wahlund, M. Morooka et al., J. Geophys. Res. Planets 122, 729 (2017). https://doi.org/10.1002/2016JE005235
- E.R. Williams, Atmos. Res. 91, 140 (2009). https://doi.org/10.1016/j.atmosres.2008.05.018
- N.V. Ardelyan, V.L. Bychkov, G.V. Golubkov, and K.V. Kosmachevskii, Russ. J. Phys. Chem. B 12, 749 (2018). https://doi.org/10.1134/S1990793118040036
- A.V. Kostrov, Plasma Phys. Rep. 46 (4), 443 (2020). https://doi.org/10.1134/S1063780X20040066
- R. Tian, Y. Liang, S. Hao, et al., Plasma Sci. Technol. 25, 095401 (2023). https://doi.org/10.1088/2058-6272/acc44a
- D.N. Polyakov, V.V. Shumova, and L.M. Vasilyak, IEEE Trans. Plasma Sci. 42, 2684 (2014). https://doi.org/10.1109/TPS.2014.2311584
- R.V. Krems, Phys. Chem. Chem. Phys. 10, 4079 (2008). https://doi.org/10.1039/B802322K
- G.J.M. Hagelaar, and L. C. Pitchford, Plasma Sources Sci. Technol. 14, 722 (2005). http://dx.doi.org/10.1088/0963-0252/14/4/011
- L.C. Pitchford, J. Phys. D: Appl. Phys. 46, 330301 (2013). https://iopscience.iop.org/article/10.1088/0022-3727/ 46/33/330301
- V.V. Shumova, D.N. Polyakov, and L.M. Vasilyak, Russ. J. Phys. Chem. B 15 (4), 691 (2021). https://doi.org/10.1134/S1990793121040242
- V.V. Shumova, D.N. Polyakov, and L.M. Vasilyak, Russ. J. Phys. Chem. B 14 (4), 666 (2020). https://doi.org/10.1134/S1990793120040223
- D.N. Polyakov, V.V. Shumova, and L.M. Vasilyak, Plasma Phys. Rep. 43 (3), 397 (2017). https://doi.org/10.1134/S1063780X17030096
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 


