Influence of the choice of kinetic mechanism on predicted structure of lean hydrogen–air flames
- Autores: Tereza A.M.1, Agafonov G.L.1, Anderzhanov E.K.1, Betev A.S.1, Khomik S.V.1, Cherepanova T.T.1, Cherepanov A.A.1, Medvedev S.P.1
- 
							Afiliações: 
							- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
 
- Edição: Volume 44, Nº 4 (2025)
- Páginas: 79-87
- Seção: Combustion, explosion and shock waves
- URL: https://cardiosomatics.ru/0207-401X/article/view/682729
- DOI: https://doi.org/10.31857/S0207401X25040097
- ID: 682729
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The influence of the choice of a detailed kinetic mechanism (DKM) on the structure of a laminar flame for lean hydrogen-air mixtures has been studied by means of numerical simulation using a CHEMKIN-Pro software module. It is shown that the choice of three detailed kinetic mechanisms (DKMs), differing in the rate constants of elementary reactions, the number of reaction pathways, and the presence of additional components, has virtually no effect on flame propagation velocity and flame structure. It is found that small differences in the local sensitivity of heat release to elementary reactions can provide reliable information on possible ways of influencing flame propagation.
Texto integral
 
												
	                        Sobre autores
A. Tereza
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: tereza@chph.ras.ru
				                					                																			                												                	Rússia, 							Moscow						
G. Agafonov
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
														Email: tereza@chph.ras.ru
				                					                																			                												                	Rússia, 							Moscow						
E. Anderzhanov
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
														Email: tereza@chph.ras.ru
				                					                																			                												                	Rússia, 							Moscow						
A. Betev
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
														Email: tereza@chph.ras.ru
				                					                																			                												                	Rússia, 							Moscow						
S. Khomik
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
														Email: tereza@chph.ras.ru
				                					                																			                												                	Rússia, 							Moscow						
T. Cherepanova
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
														Email: tereza@chph.ras.ru
				                					                																			                												                	Rússia, 							Moscow						
A. Cherepanov
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
														Email: tereza@chph.ras.ru
				                					                																			                												                	Rússia, 							Moscow						
S. Medvedev
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
														Email: tereza@chph.ras.ru
				                					                																			                												                	Rússia, 							Moscow						
Bibliografia
- A.M. Domashenko, A.V. Stepanov. Vesti gazovoj nauki 51(2), 211 (2022).
- S.V. Korobtsev, V.N. Fateev, R.O. Samsonov, S.I. Kozlov. Transport na alternativnom toplive 5, 68 (2008).
- A.A. Abagyan, E.O. Adamov, E.V. Burlakov. Proc. IAEA Conf. (Intern.). Vienna, Austria. 1996. IAEA-J4-TC972. P. 46.
- G. Saji, Nucl. Eng. Des. 307, 64 (2016). http://dx.doi.org/10.1016/j.nucengdes.2016.01.039
- Bentaib, N. Meynet, A. Bleyer. Nucl. Eng. 47(1), 26 (2015). https://doi.org/10.1016/j.net.2014.12.001
- Kirillov, N. Kharitonova, R. Sharafutdinov, N. Krenniikov. Nucl. Rad. Safety J. 2(84), 26 (2017).
- Yakovenko, A. Kiverin, K. Melnikova. Fluids 6(1), 21 (2021). https://doi.org/10.3390/fluids6010021
- I.S. Yakovenko, I.S. Medvedkov, A.D. Kiverin. Russ. J. Phys. Chem. B. 16, 294 (2022). https://doi.org/10.1134/S1990793122020142
- A.M. Tereza, G.L. Agafonov, E.K. Anderzhanov, A.S. Betev, S.P. Medvedev, S.V. Khomik, T.T. Cherepanova. Russ. J. Phys. Chem. B. 17(4), 974 (2023). https://doi.org/10.1134/S1990793123040309
- P. Krivosheyev, Y. Kisel, A. Skilandz, K. Sevrouk, O. Penyazkov, A. Tereza. Int. J. Hydrogen Energy 66, 81 (2024). https://doi.org/10.1016/j.ijhydene.2024.03.363
- D.A. Frank-Kamenetskii. Diffusion and Heat Transfer in Chemical Kinetics. (Plenum, New York, 1969).
- A.A. Azatyan, S.K. Abramov, A.A. Borisov, V.M. Prokopenko. Russ. J. Phys. Chem. A. 86 (3), 355 (2012). https://doi.org/10.1134/S0036024412030053
- A.L. Sanchez, F.A. Williams. Prog. Energy Combust. Sci. 41, 1 (2014). https://doi.org/10.1016/j.pecs.2013.10.002
- A.M. Tereza, G.L. Agafonov, E.K. Anderzhanov et al. Russ. J. Phys. Chem. B. 17 (6), 1294. https://doi.org/10.1134/S1990793123060246
- D.A. Knyazkov, A.G. Shmakov, O.P. Korobeinichev. Combust. Flame 151, 37 (2007). https://doi.org/10.1016/j.combustflame.2007.06.011
- D.A. Knyazkov, V. Shvartsberg, A. Dmitriev et al. Combustion Explosion and Shock Waves 53, 491 (2017). https://doi.org/10.1134/S001050821705001X
- A.G. Shmakov. Doctoral Dissertation in Chemistry. (Voevodsky Inst. of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 2022).
- A.E. Elyanov, A.I. Gavrikov, V.V. Golub, A.Y. Mikushkin, V.V. Volodin. Process Saf. Environm. Prot. 164, 50 (2022). https://doi.org/10.1016/j.psep.2022.06.007
- D.L. Baulch, C.T. Bowman, C.J. Cobos et al. J. Phys. Chem. Ref. Data. 34(3), 757 (2005). https://doi.org/10.1063/1.1748524
- A.M. Tereza, G.L. Agafonov, E.K. Anderzhanov et al. Russ. J. Phys. Chem. B 16, 686 (2022). https://doi.org/10.1134/S1990793122040297
- Keromnes, W.K. Metcalfe, K.A. Heufer et al. Combust. and Flame 160, 995 (2013). https://doi.10.1016/j.combustflame.2013.01.001
- A.A. Konnov. Combust. and Flame 203, 14 (2019). https://doi.org/10.1016/j.combustflame.2019.01.032
- CHEMKIN-Pro 15112, Reaction Design, San Diego, CK-TUT-10112-1112-UG-1., 2011.
- S.P. Karkach, V.I. Osherov. J. Chem. Phys. 110, 11918 (1999). http://dx.doi.org/10.1063/1.479131
- J.V. Michael, J.W. Sutherland, L.B. Harding et al. // Proc. Combust. Symp. 28, 1471 (2000).
- P.A. Vlasov, V.N. Smirnov, A.M. Tereza. Russ. J. Phys. Chem. B 10, 456 (2016). https://doi.10.1134/S1990793116030283
- S. Medvedev, G. Agafonov, S. Khomik. Acta Astronaut. 126, 150 (2016). https://doi.org/10.1016/j.actaastro.2016.04.019
- A.E. Lutz, R.J. Kee, J.A. Miller. Sandia National Laboratories, Livermore, CA, SAND 87-82481998.
- R.J. Kee, J.F. Grcar, M.D. Smooke, J.A. Miller. Sandia National Laboratories, Livermore, CA, SAND85-8240, 1985.
- V.V. Roenko, A.P. Karmes. Tekhnologia pozharotushenia 3, 15 (2017).
- B.E. Gel’fand, O.M. Popov, B.B. Chaivanov. Hydrogen: Parameters of Combustion and Explosion (Fizmatlit, Moscow, 2008) [In Russian].
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 



