Двумерная модель горения смеси метана с воздухом в канале щелевой горелки
- Авторы: Беляев А.А.1, Арутюнов А.В.1,2, Василик Н.Я.1, Захаров А.А.1, Арутюнов В.С.1,3,4
- 
							Учреждения: 
							- Федеральный исследовательский центр химической физики им. Н.Н. Семёнова Российской академии наук
- Shenzhen MSU-BIT University
- Федеральный исследовательский центр проблем химической физики и медицинской химии Российской академии наук
- Российский государственный университет нефти и газа (НИУ) им. И.М. Губкина
 
- Выпуск: Том 44, № 4 (2025)
- Страницы: 19-30
- Раздел: Горение, взрыв и ударные волны
- URL: https://cardiosomatics.ru/0207-401X/article/view/682723
- DOI: https://doi.org/10.31857/S0207401X25040035
- ID: 682723
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
Предложена двумерная модель горения перемешанной смеси метана с воздухом внутри плоскопараллельного канала щелевой горелки, состоящей из набора параллельных металлических пластин, изготовленных из жаростойкого материала. Задача описывается системой уравнений, представляющих законы сохранения энергии в газе и твердой фазе, массы и элементного состава газовой фазы с учетом протекания сложной химической реакции, теплообмена между газом и поверхностью пластин, теплового излучения нагретых пластин, теплопроводности в пластинах, молекулярного и конвективного тепло- и массопереноса в газе. Расчеты с использованием предложенной модели дают вполне адекватное представление о процессе горения в канале щелевой горелки. Получено количественное согласие с экспериментом по максимальному значению удельной мощности горения, которое может превышать 500 Вт/см2. При увеличении скорости газового потока (удельной мощности горения) зона химической реакции перемещается вдоль оси канала в сторону выхода, при этом фронт пламени с вершиной на оси симметрии канала сильнее вытягивается вдоль пластины. В стехиометрической смеси фронт пламени сдвигается ближе к входу в канал, а концентрация монооксида углерода в продуктах горения на выходе из канала значительно выше, чем в бедной смеси. При увеличении скорости газовой смеси на входе в канал концентрация CO на выходе из канала растет, хотя и остается небольшой. Полученные результаты качественно соответствуют экспериментальным результатам исследования горения метавоздушной смеси в канале щелевой горелки.
Полный текст
 
												
	                        Об авторах
А. А. Беляев
Федеральный исследовательский центр химической физики им. Н.Н. Семёнова Российской академии наук
							Автор, ответственный за переписку.
							Email: belyaevIHF@yandex.ru
				                					                																			                												                	Россия, 							Москва						
А. В. Арутюнов
Федеральный исследовательский центр химической физики им. Н.Н. Семёнова Российской академии наук; Shenzhen MSU-BIT University
														Email: belyaevIHF@yandex.ru
				                					                																			                												                	Россия, 							Москва; Shenzhen, China						
Н. Я. Василик
Федеральный исследовательский центр химической физики им. Н.Н. Семёнова Российской академии наук
														Email: belyaevIHF@yandex.ru
				                					                																			                												                	Россия, 							Москва						
А. А. Захаров
Федеральный исследовательский центр химической физики им. Н.Н. Семёнова Российской академии наук
														Email: belyaevIHF@yandex.ru
				                					                																			                												                	Россия, 							Москва						
В. С. Арутюнов
Федеральный исследовательский центр химической физики им. Н.Н. Семёнова Российской академии наук; Федеральный исследовательский центр проблем химической физики и медицинской химии Российской академии наук; Российский государственный университет нефти и газа (НИУ) им. И.М. Губкина
														Email: belyaevIHF@yandex.ru
				                					                																			                												                	Россия, 							Москва; Черноголовка; Москва						
Список литературы
- Shmelev V.M. // Combust. Sci. Technol. 2014. V. 186. № 7. P. 943. https://doi.org/10.1080/00102202.2014.890601
- Брюханов О.Н., Крейнин Е.В., Мастрюков Б.С. Радиационный газовый нагрев. Л.: Недра, 1989.
- Mujeebu M.A., Abdullah M.Z., Mohamad A.A. // Energy. 2011. V. 36. № 8. P. 5132. https://doi.org/10.1016/j.energy.2011.06.014
- Василик Н.Я., Шмелев В.М. // Горение и взрыв. 2019. Т. 12. № 1. С. 37. https://doi.org/10.30826/CE19120105
- Vasilik N., Shmelev V. // Proc. Eighth Intern. Conf. on Advances in Civil, Structural and Environmental Engineering (ACSEE 2019). P. 16. https://doi.org/10.15224/978-1-63248-166-5-03
- Hackert C.L., Ellzey J.L., Ezekoye O.A. // Combust. and Flame. 1999. V. 116. № 1–2. P. 177.
- Палесский Ф.С., Минаев С.С., Фурсенко Р.В. и др. // Физика горения и взрыва. 2012. Т. 48. № 1. С. 21.
- Шмелев В.М. // Хим. физика. 2020. Т. 39. № 8. С. 75. https://doi.org/10.31857/S0207401X20080099
- Беляев А.А., Шмелев В.М., Василик Н.Я., Захаров А.А., Арутюнов В.С. // Горение и взрыв. 2020. Т. 13. № 2. С. 10. https://doi.org/10.30826/CE20130202
- Вильямс Ф.А. Теория горения / Пер. с англ. М.: Наука, 1971.
- Burcat A. Ideal gas thermodynamic data in polinomial form for combustion and air pollution use. Laboratory for Chemical Kinetics, ELTE Eötvös Lorand University, Budapest (Hungary). http://garfield.chem.elte.hu/Burcat/burcat.html
- Франк-Каменецкий Д.А. Диффузия и теплопередача в химической кинетике. 3-е изд., испр. и доп. М.: Наука, 1987.
- Рид Р., Праусниц Дж., Шервуд Т. Свойства газов и жидкостей / Пер. с англ. Л.: Химия, 1982.
- Басевич В.Я., Беляев А.А., Посвянский В.С. и др. // Хим. физика. 2013. Т. 32. № 4. С. 87. https://doi.org/10.7868/S0207401X13040031
- Михалкин В.Н., Сумской С.И., Тереза А.М. и др. // Хим. физика. 2022. Т. 41. № 8. С. 3. https://doi.org/10.31857/S0207401X2208009X
- Паланкоева А.С., Беляев А.А., Арутюнов В.С. // Хим. физика. 2022. Т. 41. № 6. С. 7. https://doi.org/10.31857/S0207401X22060097
- Арсентьев С.Д., Тавадян Л.А., Брюков М.Г., Паланкоева А.С., Беляев А.А., Арутюнов В.С. // Хим. физика. 2022. Т. 41. № 11. С. 3. https://doi.org/10.31857/S0207401X22110024
- Шлихтинг Г. Теория пограничного слоя / Пер. с нем. М.: Наука, 1974.
- Василик Н.Я., Шмелев В.М. // Горение и взрыв. 2020. Т. 13. № 2. С. 19. https://doi.org/10.30826/CE20130203
- Vasilik N. // Proc. 2nd Intern. E-Conference on Advances in Engineering, Technology and Management (ICETM 2020). P. 29. https://doi.org/10.15224/978-1-63248-189-4-07
- Василик Н.Я., Захаров А.А. // Горение и взрыв. 2020. Т. 13. № 4. С. 29. https://doi.org/10.30826/CE21130404
- Василик Н.Я., Финяков С.В. // Там же. 2021. Т.14. № 3. С. 27. https://doi.org/10.30826/CE21140304
- Зельдович Я.Б., Баренблатт Г.И., Либрович В.Б. и др. Математическая теория горения и взрыва. М.: Наука, 1980.
- Беляев А.А., Ермолаев Б.С. // Хим. физика. 2023. Т. 42. № 8. С. 3. https://doi.org/10.31857/S0207401X23080034
Дополнительные файлы
 
				
			 
						 
						 
						 
					 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 







