Исследование абляционных свойств углеродных теплозащитных материалов (Обзор)
- Авторы: Герасимов Г.Я.1, Левашов В.Ю.1, Козлов П.В.1, Быкова Н.Г.1, Забелинский И.Е.1
- 
							Учреждения: 
							- МГУ им. М.В. Ломоносова
 
- Выпуск: Том 44, № 4 (2025)
- Страницы: 31-45
- Раздел: Горение, взрыв и ударные волны
- URL: https://cardiosomatics.ru/0207-401X/article/view/682724
- DOI: https://doi.org/10.31857/S0207401X25040048
- ID: 682724
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
Рассмотрено современное состояние исследований по изучению абляционных свойств углеродных теплозащитных материалов для космических аппаратов применительно к условиям их движения в атмосфере Земли. Проанализированы различные углерод-полимерные композиты, которые являются основным и наиболее универсальным классом теплозащитных материалов благодаря их способности адаптироваться к различным тепловым нагрузкам. Сделан критический обзор физико-химических процессов, протекающих при абляции углеродсодержащих композитов, а также методов их моделирования. Проведен анализ экспериментальных установок, используемых для исследования абляционных свойств углеродных теплозащитных материалов, рассмотрены принципы их работы, потенциал использования и ограничения.
Полный текст
 
												
	                        Об авторах
Г. Я. Герасимов
МГУ им. М.В. Ломоносова
														Email: vyl69@mail.ru
				                					                																			                								
Институт механики
Россия, МоскваВ. Ю. Левашов
МГУ им. М.В. Ломоносова
							Автор, ответственный за переписку.
							Email: vyl69@mail.ru
				                					                																			                								
Институт механики
Россия, МоскваП. В. Козлов
МГУ им. М.В. Ломоносова
														Email: vyl69@mail.ru
				                					                																			                								
Институт механики
Россия, МоскваН. Г. Быкова
МГУ им. М.В. Ломоносова
														Email: vyl69@mail.ru
				                					                																			                								
Институт механики
Россия, МоскваИ. Е. Забелинский
МГУ им. М.В. Ломоносова
														Email: vyl69@mail.ru
				                					                																			                								
Институт механики
Россия, МоскваСписок литературы
- Uyanna O., Najafi H. // Acta Astronaut. 2020. V. 176. P. 341. https://doi.org/10.1016/j.actaastro.2020.06.047
- Efremov A.V., Efremov E.V., Tiaglik M.S. et al. // Ibid. 2023. V. 204. P. 900. https://doi.org/10.1016/j.actaastro.2022.10.056
- Brandis A.M., Cruden B.A. // AIAA Paper. 2017. № 2017-1145. https://doi.org/10.2514/6.2017-1145
- Герасимов Г.Я., Козлов П.В., Забелинский И.Е., Быкова Н.Г., Левашов В.Ю. // Хим. физика. 2022. Т. 41. № 8. С. 17. https://doi.org/10.31857/S0207401X22080027
- Быкова Н.Г., Забелинский И.Е., Козлов П.И., Герасимов Г.Я., Левашов В.Ю. // Хим. физика. 2023. Т. 42. № 10. С. 34. https://doi.org/10.31857/S0207401X23100047
- Суржиков С.Т. // Хим. физика. 2010. Т. 29. № 7. С. 48.
- Zhao Y., Huang H. // Acta Astronaut. 2020. V. 169. P. 84. https://doi.org/10.1016/j.actaastro.2020.01.002
- Koo J.H., Ho D.W.H., Bruns M.C., Ezekoye O.A. // AIAA Paper. 2007. № 2007-2131. https://doi.org/10.2514/6.2007-2131
- Kumar C.V., Kandasubramanian B. // Ind. Eng. Chem. Res. 2019. V. 58. P. 22663. https://doi.org/10.1021/acs.iecr.9b04625
- Buffenoir F., Zeppa C., Pichon T., Girard F. // Acta Astronaut. 2016. V. 124. P. 85. https://doi.org/10.1016/j.actaastro.2016.02.010
- Barcena J., Garmendia I., Triantou K. et al. // Ibid. 2017. V. 134. P. 85. https://doi.org/10.1016/j.actaastro.2017.01.045
- Li W., Zhang Z., Jiang Z. et al. // Aerosp. Sci. Technol. 2022. V. 126. № 107647. https://doi.org/10.1016/j.ast.2022.107647
- Zhao Z., Li K., Kou G., Li W. // Corros. Sci. 2020. V. 206. № 110496. https://doi.org/10.1016/j.corsci.2022.110496
- Barbante P.F. // J. Thermophys. Heat Transf. 2006. V. 20. P. 493. https://doi.org/10.2514/1.17185
- Liu F., Yang J., Xiao X. et al. // Meas. Sci. Technol. 2022. V. 33. № 095004. https://doi.org/10.1088/1361-6501/ac6b17
- Fagnani A., Helber B., Hubin A., Chazot O. // Ibid. 2023. V. 34. № 075401. https://doi.org/10.1088/1361-6501/acc67c
- Kihara H., Hatano M., Nakiyama N., Abe K., Nishida M. // Trans. Japan Soc. Aero. Space Sci. 2006. V. 49. № 164. P. 65. https://doi.org/10.2322/tjsass.49.65
- Bailey S.C.C., Bauer D., Panerai F. et al. // Exp. Therm. Fluid Sci. 2018. V. 93. P. 319. https://doi.org/10.1016/j.expthermflusci.2018.01.005
- Ringel B.M., Boesch H.J., Oruganti S. et al. // AIAA Paper. 2024. № 2024-0649. https://doi.org/10.2514/6.2024-0649
- Radhakrishnan G., Adams P.M., Bernstein L.S. // J. Appl. Phys. 2023. V. 134. № 013303. https://doi.org/10.1063/5.0153331
- Park C., Bogdanoff D.W. // J. Thermophys. Heat Transf. 2006. V. 20. P. 487. https://doi.org/10.2514/1.15743
- D’Souza M.G., Eichmann T.N., Potter D.F. et al. // AIAA J. 2010. V. 48. P. 1557. https://doi.org/10.2514/1.J050207
- Bleilebens M., Olivier H. // Shock Waves 2006. V. 15. P. 301. https://doi.org/10.1007/s00193-006-0025-2
- Mansour N.N., Panerai F., Lachaud J., Magin T. // Annu. Rev. Fluid Mech. 2024. V. 56. P. 549. https://doi.org/10.1146/annurev-fluid-030322-010557
- Milos F.S., Chen Y.-K. // J. Spacecr. Rockets 2013. V. 50. P. 137. https://doi.org/10.2514/1.A32302
- Chen W. // Int. J. Heat Mass Transf. 2016. V. 95. P. 720. https://doi.org/10.1016/j.ijheatmasstransfer.2015.12.031
- Huang Y.Z., Yu Yin, Hu Y.L., Yao Z.Y., Wu Dan // Acta Astronaut. 2024. V. 214. P. 1. https://doi.org/10.1016/j.actaastro.2023.10.017
- Lopez B., Lino da Silva M. // AIAA Paper. 2016. № 2016-4025. https://doi.org/10.2514/6.2016-4025
- Sohn I., Li Z., Levin D.A. // Ibid. 2011. № 2011-3758. https://doi.org/10.2514/6.2011-3758
- Yang J., Ge J., Jing Z., Shang T., Liang J. // Int. J. Heat Mass Transf. 2024. V. 228. № 125658. https://doi.org/10.1016/j.ijheatmasstransfer.2024.125658
- Zibitsker A.L., McQuaid J.A., Fu R., Brehm C., Martin A. // AIAA Paper. 2024. № 2024-1479. https://doi.org/10.2514/6.2024-1479
- Гуняев Г.М., Гофин М.Я. // Авиационные материалы и технологии. 2013. № S1. С. 62.
- Николаев А.И. // Тонкие химические технологии. 2015. Т. 10. № 2. С. 61.
- Чуканов Н.В., Ларикова Т.С., Дремова Н.Н. и др. // Хим. физика. 2020. Т. 39. № 3. С. 71. https://doi.org/10.31857/S0207401X20030036
- Иким М.И., Спиридонова Е.Ю., Громов В.Ф., Герасимов Г.Н., Трахтенберг Л.И. // Хим. физика. 2024. Т. 43. № 1. С. 102. https://doi.org/10.31857/S0207401X24010128
- Соколкин Ю.В., Вотинов А.М., Ташкинов А.А., Постных А.М., Чекалкин А.А. Технология и проектирование углерод-углеродных композитов и конструкций. М.: Физматлит, 1996.
- Дмитриенко Ю.И. Механика композитных конструкций при высоких температурах. М.: Физматлит, 2019.
- Jones F.R. Composites Science, Technology and Engineering. Cambridge: Univ. Press, 2022.
- Johnson S.M. // Engineering Ceramics: Current Status and Future Prospects/Eds. Ohji T., Singh M. New York: Wiley, 2015. P. 224. https://doi.org/10.1002/9781119100430.ch12
- Natali M., Kenny J.M., Torre L. // Prog. Mater. Sci. 2016. V. 84. P. 192. https://doi.org/10.1016/j.pmatsci.2016.08.003
- Chinnaraj R.K., Kim Y.C., Choi S.M. // Materials 2023. V. 16. P. 5929. https://doi.org/10.3390/ma16175929
- Behrens B., Müller M. // Acta Astronaut. 2004. V. 55. P. 529. https://doi.org/10.1016/j.actaastro.2004.05.034
- Резник С.В., Колесников А.Ф., Просунцов П.В., Михайловский К.В. // Инж.-физ. журн. 2019. Т. 29. № 2. С. 322. https://doi.org/10.1007/s10891-019-01934-6
- Paglia L., Genova V., Tirillò J. et al. // Appl. Compos. Mater. 2021. V. 28. P. 1675. https://doi.org/10.1007/s10443-021-09925-8
- Reynier P. // Acta Astronaut. 2013. V. 83. P. 175 (2013). https://doi.org/10.1016/j.actaastro.2012.06.016
- Lachaud J., Aspa Y., Vignoles L. // J. Heat Mass Transf. 2008. V. 51. P. 2614. https://doi.org/10.1016/j.ijheatmasstransfer.2008.01.008
- Sahoo S.K., Mohanty S., Nayak S.K. // Prog. Org. Coat. 2015. V. 88. P. 263. https://doi.org/10.1016/j.porgcoat.2015.07.012
- Shi S., Lei B., Li M. et al. // Ibid. 2020. V. 143. № 105609. https://doi.org/10.1016/j.porgcoat.2020.105609
- Pulci G., Tirillò J., Marra F. et al. // Composites 2010. V. A41. P. 1483. https://doi.org/10.1016/j.compositesa.2010.06.010
- Srikanth I., Padmavathi N., Kumar S. et al. // Compos. Sci. Technol. 2013. V. 80. P. 1. https://doi.org/10.1016/j.compscitech.2013.03.005
- Wang L., Li J., Li K., Wang Y., Ma C. // Chinese J. Aeronaut. 2024. V. 37. P. 471. https://doi.org/10.1016/j.cja.2023.11.005
- Kuppusamy R.R.P., Neogi S., Mohanta S. et al. // Adv. Mater. Sci. Eng. 2022. V. 2022. № 7808587. https://doi.org/10.1155/2022/7808587
- Kumar A., Ranjan C., Kumar K. et al. // Polymers. 2024. V. 16. P. 1461. https://doi.org/10.3390/polym16111461
- Быкова Н.Г., Забелинский И.Е., Козлов П.В., Герасимов Г.Я., Левашов В.Ю. // Хим. физика. 2023. Т. 42. № 4. С. 64. https://doi.org/10.31857/S0207401X23040040
- Герасимов Г.Я., Хасхачих В.В., Сычев Г.А., Ларина О.М., Зайченко В.М. // Хим. физика. 2022. Т. 41. № 11. С. 24. https://doi.org/10.31857/S0207401X22110048
- Helber B., Turchi A., Magin T.E. // Carbon. 2017. V. 125. P. 582. https://doi.org/10.1016/j.carbon.2017.09.081
- Qin F., Peng L., He G., Li J. // Corros. Sci. 2013. V. 77. P. 164. https://doi.org/10.1016/j.corsci.2013.07.040
- Qin F., Peng L., He G., Li J., Yan Y. // Ibid. 2015. V. 90. P. 340. https://doi.org/10.1016/j.corsci.2014.10.027
- Fradin M., Vignoles G.L., Ville C. et al. // Ibid. 2023. V. 221. № 111300. https://doi.org/10.1016/j.corsci.2023.111300
- Park C., Jaffe R.L., Partridge H. // J. Thermophys. Heat Transf. 2001. V. 15. P. 76. https://doi.org/10.2514/2.6582.
- Suzuki T., Fujita K., Ando K., Sakai T. // Ibid. 2008. V. 22. P. 382. https://doi.org/10.2514/1.35082
- Козлов П.В., Забелинский И.Е., Быкова Н.Г., Герасимов Г.Я. // Хим. физика. 2021. Т. 40. № 12. С. 23. https://doi.org/10.31857/S0207401X21120104
- Yang J., Li W., Ge J. et al. // Int. J. Heat Mass Transf. 2023. V. 206. № 123962. https://doi.org/10.1016/j.ijheatmasstransfer.2023.123962
- Davuluri R.S.C., Zhang H., Tagavi K.A., Martin A. // Int. J. Multiphase Flow. 2023. V. 159. № 104287. https://doi.org/10.1016/j.ijmultiphaseflow.2022.104287
- Xu F., Zhu S., Hu J., Ma Z., Liu Y. // Materials 2020. V. 13. № 256. https://doi.org/10.3390/ma13020256
- Liu Z., Wang Y., Xiong X. et al. // Ibid. 2023. V. 16. № 2120. https://doi.org/10.3390/ma16052120.
- Park C. // J. Thermophys. Heat Transf. 1993. V. 7. P. 385. https://doi.org/10.2514/3.431
- Chen Y.-K., Milos F.S. // J. Spacecr. Rockets 2005. V. 42. P. 961. https://doi.org/10.2514/1.12248
- De Cesare M., Savino L., Ceglia G. et al. // Prog. Aerospace Sci. 2020. V. 112. № 100550. https://doi.org/10.1016/j.paerosci.2019.06.001
- Горский В.В., Гордеев А.Н., Дмитриева А.А., Колесников А.Ф. // Физ.-хим. кинетика в газ. динамике. 2008. Т. 6. № 1.
- Fagnani A., Helber B., Hubin A., Chazot O. // Infrared Phys. Technol. 2024. V. 139. № 105301. https://doi.org/10.1016/j.infrared.2024.105301
- Oruganti S., Capponi L., Ringel B.M. et al. // AIAA Paper. 2024. № 2024-0861. https://doi.org/10.2514/6.2024-0863
- Uhl J., Owens W., Dougherty M. et al. // Ibid. 2011. № 2011-3618. https://doi.org/10.2514/6.2011-3618
- Grigat F., Loehle S., Zander F., Fasoulas S. // Ibid. 2020. № 2020-1706. https://doi.org/10.2514/6.2020-1706
- De Giacomo A., Hermann J. // J. Phys. D: Appl. Phys. 2017. V. 50. № 183002. https://doi.org/10.1088/1361-6463/aa6585
- Calver T.I., Bauer W.A., Rice C.A., Perram G.P. // Optical Eng. 2021. V. 60. № 057103. https://doi.org/10.1117/1.OE.60.5.057103
- Панченко Ю.Н., Пучикин А.В., Ямпольская С.А. и др. // ЖТФ. 2022. Т. 92. С. 867. https://doi.org/10.21883/JTF.2022.06.52516.32-22
- Diaz D., Hahn D.W. // Spectrochim. Acta B. 2020. V. 166. № 105800. https://doi.org/10.1016/j.sab.2020.105800
- Lewis S.W., Morgan R.G., McIntyre T.J., Alba C.R., Greendyke R.B. // J. Spasecr. Rockets. 2016. V. 53. P. 887. https://doi.org/10.2514/1.A33267
- Alba C.R., Greendyke R.B., Lewis S.W., Morgan R.G., McInture T.J. // Ibid. 2016. V. 53. P. 84. https://doi.org/10.2514/1.A33266
- Park C. Nonequilibrium Hypersonic Aerothermodynamics. New York, Wiley, 1990.
- Zhluktov S.V., Abe T. // J. Thermophys. Heat Transf. 1999. V. 13. P. 50. https://doi.org/10.2514/2.6400
- Whiting E., Park C., Liu Y., Arnold J., Paterson J. // NASA Ref. Publ. 1996. № 1389.
- Bianchi D., Nasuti F., Martelli E. // J. Spasecr. Rockets 2010. V. 47. P. 554. https://doi.org/10.2514/1.47995
- Başkaya A.O., Capriati M., Turchi A., Magin T., Hickel S. // Comp. Fluids 2024. V. 270. № 106134. https://doi.org/10.1016/j.compfluid.2023.106134
- Bird G.A. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford: Clarendon Press, 1994.
- Jiang D., Wang P., Li J., Mao M. // Entropy 2022. V. 24. P. 836. https://doi.org/10.3390/e24060836
- Chen S., Stemmer C. // J. Spacecraft Rockets. 2022. V. 59. P. 1634. https://doi.org/10.2514/1.A35359
- Кусов А.Л., Быкова Н.Г., Герасимов Г.Я. Козлов П.В., Забелинский И.Е., Левашов В.Ю. // Хим. физика. 2024. Т. 43. № 7. С. 47. https://doi.org/10.31857/S0207401X24070058
- Ramjatan S., Douglas J., Schwartzentruber T.E. // AIAA Paper. 2023. № 2023-3326. https://doi.org/10.2514/6.2023-3326
- Poovathingal S., Stern E.C., Nompelis I., Schwartzentruber T.E., Candler G.V. // J. Comput. Phys. 2019. V. 380. P. 427. https://doi.org/10.1016/j.jcp.2018.02.043
- Gosma M., Stephani K.A. // AIAA Paper. 2022. № 2022-2356. https://doi.org/10.2514/6.2022-2356
Дополнительные файлы
 
				
			 
						 
						 
						 
					 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 









