Effect of Structural Defects and Adsorbates on the Ballistic Conductivity of Carbon Nanotubes
- 作者: Merinov V.B.1,2, Domnin V.A.1
- 
							隶属关系: 
							- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia
- Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
 
- 期: 卷 42, 编号 2 (2023)
- 页面: 88-94
- 栏目: Chemical physics of nanomaterials
- URL: https://cardiosomatics.ru/0207-401X/article/view/674906
- DOI: https://doi.org/10.31857/S0207401X23020127
- EDN: https://elibrary.ru/IXGPXN
- ID: 674906
如何引用文章
详细
Using the Landauer–Buttiker formalism and the nonorthogonal tight-binding Hamiltonian with NTBM parametrization, the electron transmission and conductivity of metal armchair-type nanotubes of subnanometer diameter are studied. We consider the effect of various structural defects (Stone–Wales defect, monovacancy, replacing a nitrogen atom) and radicals adsorbed on the nanotube surface (H, O, OH, COOH) on the electronic characteristics of carbon nanotubes (CNTs). It is found that structural defects and adsorbates have different effects on their conductivity. In this case, two competing processes are observed. On the one hand, this is a weakening of the conductive properties of CNTs due to the increase in the number of scattering centers, and, on the other hand, the increase in conductivity due to structural relaxation processes.
作者简介
V. Merinov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia; Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
														Email: Merinov.V.B@gmail.com
				                					                																			                												                								Россия, Москва; Россия, Москва						
V. Domnin
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia
							编辑信件的主要联系方式.
							Email: Merinov.V.B@gmail.com
				                					                																			                												                								Россия, Москва						
参考
- Iijima S. // Nature. 1991. V. 354. P. 56; https://doi.org/10.1038/354056a0
- Rahman G., Najaf Z., Mehmood A. et al. // C. 2019. V. 5. № 3. P. 3; https://doi.org/10.3390/c5010003
- Li M., Liu X., Zhao X. et al. // Single-Walled Carbon Nanotubes / Eds. Li Y., Maruyama S. Springer Intern. Publ., 2019. P. 25; https://doi.org/10.1007/978-3-030-12700-8_2
- Guo T., Nikolaev P., Rinzler A.G. et al. // J. Phys. Chem. 1995. V. 99. P. 10694; https://doi.org/10.1021/j100027a002
- Guo T., Nikolaev P., Thess A. et al. // Chem. Phys. Lett. 1995. V. 243. P. 49; https://doi.org/10.1016/0009-2614(95)00825-O
- Kosakovskaya Z.Y., Chernozatonskii L.A., Fedorov E.F. // Pri’sma Zh. Eksp. Teor. Fiz. 1992. V. 56. P. 26.
- Journet C., Bernier P. // Appl. Phys. A. 1998. V. 67. P. 1; https://doi.org/10.1007/s003390050731
- Mintmire J.W., Dunlap B.I., White C.T. // Phys. Rev. Lett. 1992. V. 68. P. 631; https://doi.org/10.1103/PhysRevLett.68.631
- Tans S.J., Devoret M.H., Dai H. et al. // Nature. 1997. V. 386. P. 474; https://doi.org/10.1038/386474a0
- Hamada N., Sawada S., Oshiyama A. // Phys. Rev. Lett. 1992. V. 68. P. 1579; https://doi.org/10.1103/PhysRevLett.68.1579
- Wilder J.W.G., Venema L.C., Rinzler A.G. et al. // Nature. 1998. V. 391. P. 59; https://doi.org/10.1038/34139
- Min-Feng Y., Oleg L., J. D.M. et al. // Science. 2000. V. 287. P. 637; https://doi.org/10.1126/science.287.5453.637
- Baimova J.A., Fan Q., Zeng L. et al. // J. Nanomater. 2015. V. 2015. P. 186231; https://doi.org/10.1155/2015/186231
- Annin B.D., Baimova Y.A., Mulyukov R.R. // J. Appl. Mech. Tech. Phys. 2020. V. 61. P. 834; https://doi.org/10.1134/S0021894420050193
- Berber S., Kwon Y.-K., Tománek D. // Phys. Rev. Lett. 2000. V. 84. P. 4613; https://doi.org/10.1103/PhysRevLett.84.4613
- Kochaev A. // Phys. Rev. B. 2017. V. 96. P. 155428; https://doi.org/10.1103/PhysRevB.96.155428
- Kim P., Shi L., Majumdar A. et al. // Phys. Rev. Lett. 2001. V. 87. P. 215502; https://doi.org/10.1103/PhysRevLett.87.215502
- Kochaev A., Katin K., Maslov M. // Comput. Condens. Matter. 2019. V. 18. P. e00350; https://doi.org/10.1016/j.cocom.2018.e00350
- Ashraf M.A., Liu Z., Najafi M. // Rus. J. Phys. Chem. B. 2020. V. 14. № 2. P. 217; https://doi.org/10.1134/S1990793120020189
- Дышин А.А., Кузьмиков М.С., Алешонкова А.А. и др. // Сверхкрит. флюиды: теория и практика. 2021. Т. 16. С. 3; https://doi.org/10.1134/S1990793121080030
- Zuev Y.I., Vorobei A.M., Parenago O.O. // Rus. J. Phys. Chem. B. 2021. V. 15. № 7. P. 1107; https://doi.org/10.1134/S1990793121070174
- Vorobei A.M., Zuev Y.I., Dyshin A.A. et al. // Rus. J. Phys. Chem. B. 2021. V. 15. № 8. P. 1314; https://doi.org/10.1134/S1990793121080169
- Bianco A., Kostarelos K., Partidos C.D. et al. // Chem. Commun. 2005. P. 571; https://doi.org/10.1039/B410943K
- Balasubramanian K., Burghard M. // Small. 2005. V. 1. P. 180; https://doi.org/10.1002/smll.200400118
- Harrison B.S., Atala A. // Biomaterials. 2007. V. 28. P. 344; https://doi.org/10.1016/j.biomaterials.2006.07.044
- de las Casas C., Li W. // J. Power Sources. 2012. V. 208. P. 74; https://doi.org/10.1016/j.jpowsour.2012.02.013
- Jeong H.Y., Lee D.-S., Choi H.K. et al. // Appl. Phys. Lett. 2010. V. 96. P. 213105; https://doi.org/10.1063/1.3432446
- Leghrib R., Pavelko R., Felten A. et al. // Sens. Actuators, B. 2010. V. 145. P. 411; https://doi.org/10.1016/j.snb.2009.12.044
- Kumar S., Pavelyev V., Mishra P. et al. // Sens. Actuators, A. 2018. V. 283. P. 174; https://doi.org/10.1016/j.sna.2018.09.061
- Doshi M., Fahrenthold E.P. // Surf. Sci. 2022. V. 717. P. 121 998; https://doi.org/10.1016/j.susc.2021.121998
- Eskandari P., Abousalman-Rezvani Z., Roghani-Mamaqani H. et al. // Adv. Colloid Interface Sci. 2021. V. 294. P. 102471; https://doi.org/10.1016/j.cis.2021.102471
- Guo C., Wang Y., Wang F. et al. // Nanomater. 2021. V. 11. № 9. 2353; https://doi.org/10.3390/nano11092353
- da Silva Alves D.C., Healy B., Pinto L.A. de A. et al. // Molecules. 2021. V. 26. № 3. 594; https://doi.org/10.3390/molecules26030594
- Hu J., Yu J., Li Y. et al. // Nanomater. 2020. V. 10. № 4. 664; https://doi.org/10.3390/nano10040664
- Jones R.S., Kim B., Han J.-W. et al. // J. Phys. Chem. C. 2021. V. 125. P. 9356; https://doi.org/10.1021/acs.jpcc.0c11451
- Chang X., Chen L., Chen J. et al. // Adv. Compos. Hybrid Mater. 2021. V. 4. P. 435; https://doi.org/10.1007/s42114-021-00292-3
- Ridhi R., Chouksey A., Gautam S. et al. // Sensors Actuators, B. 2021. V. 334. P. 129658; https://doi.org/10.1016/j.snb.2021.129658
- Jian J., Guo X., Lin L. et al. // Ibid. 2013. V. 178. P. 279; https://doi.org/10.1016/j.snb.2012.12.085
- Mann D., Javey A., Kong J. et al. // Nano Lett. 2003. V. 3. P. 1541; https://doi.org/10.1021/nl034700o
- Cui K., Kumamoto A., Xiang R. et al. // Nanoscale. 2016. V. 8. P. 1608; https://doi.org/10.1039/C5NR06007A
- Hong B.H., Small J.P., Purewal M.S. et al. // Proc. Natl. Acad. Sci. USA. 2005. V. 102. P. 14155 LP; https://doi.org/10.1073/pnas.0505219102
- Nanotube Modeler; http://jcrystal.com/products/wincnt/
- Катин К.П., Маслов М.М. // Хим. физика. 2011. Т. 30. № 10. С. 41; https://doi.org/10.1134/S1990793111090181
- Maslov M., Podlivaev A., Katin K. // Mol. Simul. 2016. V. 42. P. 305; https://doi.org/10.1080/08927022.2015.1044453
- Katin K.P., Grishakov K.S., Podlivaev A.I. et al. // J. Chem. Theory Comput. 2020. V. 16. P. 2065; https://doi.org/10.1021/acs.jctc.9b01229
- Markussen T., Rurali R., Brandbyge M. et al. // Phys. Rev. B. 2006. V. 74. P. 245313; https://doi.org/10.1103/PhysRevB.74.245313
- Prudkovskiy V., Berd M., Pavlenko E. et al. // Carbon. 2013. V. 57. P. 498; https://doi.org/10.1016/j.carbon.2013.02.027
- Grishakov K.S., Katin K.P., Maslov M.M. // Adv. Phys. Chem. 2016. V. 2016. P. 1862959; https://doi.org/10.1155/2016/1862959
- Podlivaev A.I., Openov L.A. // Semiconductors. 2017. V. 51. P. 636; https://doi.org/10.1134/S1063782617050219
- Podlivaev A.I., Openov L.A. // Phys. Solid State. 2015. V. 57. P. 2562; https://doi.org/10.1134/S1063783415120276
- Katin K.P., Maslov M.M. // J. Phys. Chem. Solids. 2017. V. 108. P. 82; https://doi.org/10.1016/j.jpcs.2017.04.020
- Katin K.P., Shostachenko S.A., Avkhadieva A.I. et al. // Adv. Phys. Chem. 2015. V. 2015. P. 506894; https://doi.org/10.1155/2015/506894
- Büttiker M. // Phys. Rev. Lett. 1986. V. 57. P. 1761; https://doi.org/10.1103/PhysRevLett.57.1761
- Landauer R. // Philos. Mag. A J. Theor. Exp. Appl. Phys. 1970. V. 21. P. 863; https://doi.org/10.1080/14786437008238472
- Büttiker M., Imry Y., Landauer R. et al. // Phys. Rev. B. 1985. V. 31. P. 6207; https://doi.org/10.1103/PhysRevB.31.6207
- Fisher D.S., Lee P.A. // Phys. Rev. B. 1981. V. 23. P. 6851; https://doi.org/10.1103/PhysRevB.23.6851
- Katin K.P., Maslov M.M. // Adv. Condens. Matter Phys. 2015. V. 2015. P. 754873; https://doi.org/10.1155/2015/754873
- Slepchenkov M.M., Shmygin D.S., Zhang G. et al. // Carbon. 2020. V. 165. P. 139; https://doi.org/10.1016/j.carbon.2020.04.069
- Glukhova O.E., Shmygin D.S. // J. Nanotechnol. 2018. V. 9. P. 1254; https://doi.org/10.3762/bjnano.9.117
- Sancho M.P.L., Sancho J.M.L., Rubio J. // J. Phys. F Met. Phys. 1984. V. 14. P. 1205; https://doi.org/10.1088/0305-4608/14/5/016
- Nardelli M.B. // Phys. Rev. B. 1999. V. 60. P. 7828; https://doi.org/10.1103/PhysRevB.60.7828
- Sancho M.P.L., Sancho J.M.L., Sancho J.M.L. et al. // J. Phys. F Met. Phys. 1985. V. 15. P. 851; https://doi.org/10.1088/0305-4608/15/4/009
- White C.T., Todorov T.N. // Nature. 1998. V. 393. P. 240; https://doi.org/10.1038/30420
- Salem M.A., Katin K.P., Kaya S. et al. // Physica. E. 2020. V. 124. P. 114319; https://doi.org/10.1016/j.physe.2020.114319
- Katin K.P., Maslov M.M. // Ibid. 2018. V. 96. P. 6; https://doi.org/10.1016/j.physe.2017.09.021
- Goler S., Coletti C., Tozzini V. et al. // J. Phys. Chem. C. 2013. V. 117. P. 11 506; https://doi.org/10.1021/jp4017536
 
				
			 
						 
						 
						 
						 
					

 
  
  
  电邮这篇文章
			电邮这篇文章 
 开放存取
		                                开放存取 ##reader.subscriptionAccessGranted##
						##reader.subscriptionAccessGranted## 订阅或者付费存取
		                                							订阅或者付费存取
		                                					


