An Electrostatic Mechanism for the Formation of Hybrid Nanostructures Based on Gold Nanoparticles and Cationic Porphyrins
- 作者: Povolotskiy A.V.1, Soldatova D.A.1, Lukyanov D.A.1, Solovieva E.V.1
- 
							隶属关系: 
							- Institute of Chemistry, St. Petersburg State University
 
- 期: 卷 42, 编号 12 (2023)
- 页面: 70-74
- 栏目: Chemical physics of nanomaterials
- URL: https://cardiosomatics.ru/0207-401X/article/view/675014
- DOI: https://doi.org/10.31857/S0207401X23120087
- EDN: https://elibrary.ru/QTFPLH
- ID: 675014
如何引用文章
详细
interaction of cationic porphyrin with gold nanoparticles (GNPs) coated with polymer shells
with positive and negative surface potentials in an aqueous solution is studied. The criteria for the formation
of hybrid molecular-plasmon nanostructures based on the determination of the luminescence quenching
mechanism according to the Stern-Volmer equation and the change in the shape of the porphyrin luminescence
spectrum are established. The effect of the sign of the zeta potential of GNPs on the formation of hybrid
molecular-plasmon nanostructures due to electrostatic interaction is established.
作者简介
A. Povolotskiy
Institute of Chemistry, St. Petersburg State University
														Email: alexey.povolotskiy@spbu.ru
				                					                																			                												                								St. Petersburg, Russia						
D. Soldatova
Institute of Chemistry, St. Petersburg State University
														Email: alexey.povolotskiy@spbu.ru
				                					                																			                												                								St. Petersburg, Russia						
D. Lukyanov
Institute of Chemistry, St. Petersburg State University
														Email: alexey.povolotskiy@spbu.ru
				                					                																			                												                								St. Petersburg, Russia						
E. Solovieva
Institute of Chemistry, St. Petersburg State University
							编辑信件的主要联系方式.
							Email: alexey.povolotskiy@spbu.ru
				                					                																			                												                								St. Petersburg, Russia						
参考
- Lascu A., Birdeanu M., Taranu B., Fagadar-Cosma E. // J. Chem. 2018. V. 2018. P. 1; https://doi.org/10.1155/2018/5323561
- Kundu S., Patra A. // Chem. Rev. 2017. V. 117. P. 712; https://doi.org/10.1021/acs.chemrev.6b00036
- Yang J., Peng Y., Li S. et al. // Coord. Chem. Rev. 2022. V. 456. P. 214391; https://doi.org/10.1016/j.ccr.2021.214391
- Тертышная Ю.В., Лобанов А.В., Хватов А.В. // Хим. физика. 2020. Т. 39. № 11. С. 52; https://doi.org/10.31857/S0207401X20110138
- Yanagi R., Zhao T., Solanki D. et al. // ACS Energy Lett. 2022. V. 7. P. 432; https://doi.org/10.1021/acsenergylett.1c02516
- Zhang S., Geryak R., Geldmeier J. et al. // Chem. Rev. 2017. V. 117. P. 12942; https://doi.org/10.1021/acs.chemrev.7b00088
- Povolotskiy A., Evdokimova M., Konev A., Kolesnikov I., Povolotckaia A., Kalinichev A. // Springer Ser. Chem. Phys. 2019. V. 119. P. 173; https://doi.org/10.1007/978-3-030-05974-3_9
- Клименко И.В., Градова М.А., Градов О.В., Бибиков С.Б., Лобанов А.В. // Хим. физика. 2020. Т. 39. № 5. С. 43; https://doi.org/10.31857/S0207401X20050076
- Romera C., Sabater L., Garofalo A. et al. // Inorg. Chem. 2010. V. 49. P. 8558; https://doi.org/10.1021/ic101178n
- Schulz S., Ziganshyna S., Lippmann N. et al. // Microorganisms. 2022. V. 10. P. 858; https://doi.org/10.3390/microorganisms10050858
- Liu X., Atwater M., Wang J., Huo Q. // Colloids Surf., B. 2007. V. 58. P. 3; https://doi.org/10.1016/j.colsurfb.2006.08.005
- Ou Z., Yao H., Kimura K. // Chem. Lett. 2006. V. 35. P. 782; https://doi.org/10.1246/cl.2006.782
补充文件
 
				
			 
						 
						 
						 
						 
					

 
  
  
  电邮这篇文章
			电邮这篇文章 
 开放存取
		                                开放存取 ##reader.subscriptionAccessGranted##
						##reader.subscriptionAccessGranted## 订阅或者付费存取
		                                							订阅或者付费存取
		                                					



