The Acoustic Impact on Aviation Aggregates Made of Polymer Composite Materials
- Autores: Sha M.1,2, Goncharenko V.I.3, Yurov V.M.4, Oleshko V.S.3, Sun Y.3
- 
							Afiliações: 
							- Northwestern Polytechnic University (NPU), School of Civil Aviation, Shaanxi, 710060, Xi’An, Beilin, People’s Republic of China
- Yangtze River Delta Research Institute of NPU, Science and Education New Town, 215400, Taicang City, Jiangsu Province, People’s Republic of China
- Moscow Aviation Institute, 125993, Moscow, Russia
- Karaganda Buketov University, 100024, Karaganda, Republic of Kazakhstan
 
- Edição: Nº 1 (2023)
- Páginas: 48-57
- Seção: НАДЕЖНОСТЬ, ПРОЧНОСТЬ, ИЗНОСОСТОЙКОСТЬ МАШИН И КОНСТРУКЦИЙ
- URL: https://cardiosomatics.ru/0235-7119/article/view/675678
- DOI: https://doi.org/10.31857/S023571192301011X
- EDN: https://elibrary.ru/ASIKRP
- ID: 675678
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The features of the acoustic impact on aircraft aggregates made of polymer composite materials are investigated. A technique for setting the wave angle is described; it equalizes the scale factors of both measuring channels of the differential aggregate made of polymer composite materials and compensates for the cross-damping error. Analytical expressions are obtained for the scale factor and the zero offset of the differential aggregate made of polymer composite materials. This scale factor, in contrast to the discrete noise oscillation mode, does not depend on the resonant oscillation amplitude and frequency. The operating mode of the aggregate made of polymer composite materials is shown to have an ability to compensate for the resonator frequency difference, when measuring the angular velocity, by means of the control system.
Palavras-chave
Sobre autores
Minggong Sha
Northwestern Polytechnic University (NPU), School of Civil Aviation, Shaanxi, 710060, Xi’An, Beilin, People’s Republic of China; Yangtze River Delta Research Institute of NPU, Science and Education New Town, 215400, Taicang City, Jiangsu Province, People’s Republic of China
														Email: 695792773@qq.com
				                					                																			                												                								КНР, Сиань; КНР, Тайцан						
V. Goncharenko
Moscow Aviation Institute, 125993, Moscow, Russia
														Email: 695792773@qq.com
				                					                																			                												                								Россия, 
Москва						
V. Yurov
Karaganda Buketov University, 100024, Karaganda, Republic of Kazakhstan
														Email: 695792773@qq.com
				                					                																			                												                								Казахстан, Караганда						
V. Oleshko
Moscow Aviation Institute, 125993, Moscow, Russia
														Email: oleshkovs@mai.ru
				                					                																			                												                								Россия, 
Москва						
Ying Sun
Moscow Aviation Institute, 125993, Moscow, Russia
							Autor responsável pela correspondência
							Email: 695792773@qq.com
				                					                																			                												                								Россия, 
Москва						
Bibliografia
- Adam A., Papamoschou D., Bogey C. Imprint of Vortical Structures on the Near-Field Pressure of a Turbulent Jet // AIAA J. 2022. V. 60 (3). P. 1578. https://doi.org/10.2514/1.J061010
- Gangipamula R., Ranjan P., Patil R.S. Study on fluid dynamic characteristics of a low specific speed centrifugal pump with emphasis on trimming operations // Int. J. of Heat and Fluid Flow. 2022. 95. https://doi.org/10.1016/j.ijheatfluidflow.2022.108952
- Liu J., Cong S., Song Y., Chen S., Wu D. Flow structure and acoustics of underwater imperfectly expanded supersonic gas jets // Shock Waves. 2022. https://doi.org/10.1007/s00193-021-01069-9
- Nikam S.R., Sharma S. Correlation in the Near and Far Field of Compressible Jet to Identify Noise Source Characteristics // Flow, Turbulence and Combustion. 2022. V. 108 (3). P. 739. https://doi.org/10.1007/s10494-021-00299-2
- Niki Y., Rajasegar R., Li Z., Musculus M.P.B., Garcia Oliver J.M., Takasaki K. Verification of diesel spray ignition phenomenon in dual-fuel diesel-piloted premixed natural gas engine // Int. J. of Engine Research. 2022. V. 23 (2). P. 180. https://doi.org/10.1177/1468087420983060
- Rego L., Avallone F., Ragni D., Casalino D. On the mechanisms of jet-installation noise reduction with flow-permeable trailing edges // J. of Sound and Vibration. 2022. 520. https://doi.org/10.1016/j.jsv.2021.116582
- Varé M., Bogey C. Generation of acoustic tones in round jets at a Mach number of 0.9 impinging on a plate with and without a hole // J. of Fluid Mechanics. 2022. 936. https://doi.org/10.1017/jfm.2022.47
- Wang X., Lian J., Ma B., Du S. Numerical simulations and predictions of low-frequency noises downstream spillway tunnel . Shuili Fadian Xuebao // J. of Hydroelectric Engineering. 2022. V. 41 (1). P. 103. https://doi.org/10.11660/slfdxb.20220111
- Webb N., Esfahani A., Leahy R., Samimy M. Active Control of Rectangular Supersonic Twin Jets using Perturbations: Effects and Mechanism // In AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2022. https://doi.org/10.2514/6.2022-2401
- Zaman K.B.M.Q., Fagan A.F., Upadhyay P. Pressure fluctuations due to “trapped waves” in the initial region of compressible jets // J. of Fluid Mechanics. 2022. 931. https://doi.org/10.1017/jfm.2021.954
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 

