Control of optical heating of a silicon probe using near-field energy transport by localized surface plasmons
- Authors: Izbasarova E.A.1, Gazizov A.R.1,2, Kharintsev S.S.1,2
- 
							Affiliations: 
							- Kazan (Volga Region) Federal University
- Academy of Sciences of the Republic of Tatarstan
 
- Issue: Vol 87, No 12 (2023)
- Pages: 1788-1795
- Section: Articles
- URL: https://cardiosomatics.ru/0367-6765/article/view/654541
- DOI: https://doi.org/10.31857/S0367676523703088
- EDN: https://elibrary.ru/QJYIVI
- ID: 654541
Cite item
Abstract
Optical heating in solids is fundamentally related to energy dissipation during absorption. Nevertheless, light absorption can be enhanced by excitation of optical resonances (plasmon, Mi, Fano, etc.). In this paper, we investigate the amplification of light absorption in nanostructured silicon by excitation of an optical near field in the gap between the tip of a silicon probe and a gold film.
About the authors
E. A. Izbasarova
Kazan (Volga Region) Federal University
							Author for correspondence.
							Email: Izbasarova.E.A@mail.ru
				                					                																			                												                								Russia, 420111, Kazan						
A. R. Gazizov
Kazan (Volga Region) Federal University; Academy of Sciences of the Republic of Tatarstan
														Email: Izbasarova.E.A@mail.ru
				                					                																			                												                								Russia, 420111, Kazan; Russia, 420111, Kazan						
S. S. Kharintsev
Kazan (Volga Region) Federal University; Academy of Sciences of the Republic of Tatarstan
														Email: Izbasarova.E.A@mail.ru
				                					                																			                												                								Russia, 420111, Kazan; Russia, 420111, Kazan						
References
- Бучарская А.Б., Маслякова Г.Н., Чехонацкая М.Л. и др. // Опт. и спектроск. 2020. Т. 128. № 6. С. 846; Bucharskaya A.B., Maslyakova G.N., Chekhonatskaya M.L. et al. // Opt. Spectrosc. 2020. V. 128. No. 6. P. 849.
- Chernykh E.A., Kharintsev S.S. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. Suppl. 1. P. S37.
- Okamoto S., Kikuchi N., Furuta M. et al. // J. Phys. D. Appl. Phys. 2015. V. 48. Art. No. 353001.
- Мартиросян Д.Ю., Осыченко А.А., Залесский А.Д. и др. // Письма в ЖЭТФ. 2023. Т. 117. № 11. С. 876; Martirosyan D.Yu., Osychenko A.A., Zalessky A.D. et al. // JETP Lett. 2023. V. 117. No. 11. P. 873.
- Zhang X., Zhou Y., Zheng H. et al. // Nano Lett. 2021. V. 21. No. 20. P. 8715.
- Aouassa M., Mitsai E., Syubaev S. et al. // Appl. Phys. Lett. 2017. V. 111. No. 24. Art. No. 243103.
- Kharitonov A.V., Kharintsev S.S. // Russ. Fiber Lasers. 2022. V. 2. No. 1. P. 98.
- Novotny L. // Phys. Rev. Lett. 2007. V. 98. No. 26. Art. No. 266802.
- Kurpas V.V., Libenson M.N., Martsinovsky G.A. // SPIE. 1995. V. 2384. P. 128.
- Zhang W., Schmid T., Yeo B.S., Zenobi R. // J. Phys. Chem. 2008. V. 112. No. 6. P. 2104.
- Mai Z.H., Lu Y.F., Song W.D., Chim W.K. // Appl. Surf. Sci. 2000. V. 154. P. 360.
- Milner A.A., Zhang K., Garmider V., Prior Y. // Appl. Phys. A. 2010. V. 99. P. 1.
- Jersch J., Dickmann K. // Appl. Phys. Lett. 1996. V. 68. No. 6. P. 868.
- Hamann H.F., Martin Y.C., Wickramasinghe H.K. // Appl. Phys. Lett. 2004. V. 84. No. 5. P. 810.
- Su Z., Sha J., Pan G. et al. // J. Phys. Chem. B. 2006. V. 110. No. 3. P. 1229.
- McCarthy B., Zhao Y., Grover R., Sarid D. // Appl. Phys. Lett. 2005. V. 86. No. 11. Art. No. 111914.
- Khachadorian S., Scheel H., Colli A. et al. // Phys. Stat. Sol. B. 2010. V. 247. No. 11-12. P. 3084.
- Doerk G.S., Carraro C., Maboudian R. // Phys. Rev. B. 2009. V. 80. No. 7. Art. No. 073306.
- Hart T.R., Aggarwal R.L., Lax B. // Phys. Rev. B. 1970. V. 1. No. 2. P. 638.
- Balkanski M., Wallis R.F., Haro E. // Phys. Rev. B. 1983. V. 28. No. 4. P. 1928.
- Baffou G., Cichos F., Quidant R. // Nature Mater. 2020. V. 19. No. 9. P. 946.
- Liang D., Bowers J.E. // Nature Photonics. 2010. V. 4. No. 8. P. 511.
- Бурмистров Е.Р., Авакянц Л.П. // Журн. прикл. спектроск. 2021. Т. 88. № 5. С. 675; Burmistrov E.R., Avakyants L.P. // J. Appl. Spectrosc. 2021. V. 88. No. 5. P. 911.
- Kravets V.G., Kabashin A.V., Barnes W.L., Grigorenko A.N. // Chem. Rev. 2018. V. 118. No. 12. P. 5912.
- Baffou G., Quidant R. // Laser Photon. Rev. 2013. V. 7. No. 2. P. 171.
- Palik E.D. Handbook of optical constants of solids. V. 3. Academic press, 1998.
- Kharintsev S.S., Noskov A.I., Battalova E.I. et al. // arXiv: 2304.14521. 2023.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					



