Effect of hydrogenation on the structure and magnetic properties of Tb(Fe,Co)11Ti compounds

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The effect of hydrogenation on the structure and magnetic properties of TbFe11– xCoxTi compounds with different cobalt content (x = 0, 3, 4, and 5) has been studied. An X-ray diffraction  phase analysis was carried out and the parameters of the crystal structure of hydrides were determined. It is shown that hydrogenation leads to an isotropic increase in the unit cell volume. The experimental field and temperature dependence of the magnetization of single crystals hydride are studied in magnetic fields up to 90 kOe in the temperature range 5–300 K. The constants of magnetocrystalline anisotropy are determined.

Sobre autores

A. Makurenkova

Lomonosov Moscow State University, Physics Faculty

Autor responsável pela correspondência
Email: makurenkova@physics.msu.ru
Russia, 119991, Moscow

M. Zhelezny

Baykov Institute of Metallurgy and Materials Science of the Russian Academy of Science

Email: makurenkova@physics.msu.ru
Russia, 119334, Moscow

N. Pankratov

Lomonosov Moscow State University, Physics Faculty

Email: makurenkova@physics.msu.ru
Russia, 119991, Moscow

E. Kozlyakova

Lomonosov Moscow State University, Physics Faculty

Email: makurenkova@physics.msu.ru
Russia, 119991, Moscow

I. Tereshina

Lomonosov Moscow State University, Physics Faculty

Email: makurenkova@physics.msu.ru
Russia, 119991, Moscow

S. Nikitin

Lomonosov Moscow State University, Physics Faculty

Email: makurenkova@physics.msu.ru
Russia, 119991, Moscow

Bibliografia

  1. Buschow K.H.J. // J. Appl. Phys. 1988. V. 63. P. 3130.
  2. Buschow K.H.J. // J. Magn. Magn. Mater. 1991. V. 100. No. 1–3. P. 79.
  3. Hadjipanayis G.C., Gabay A.M., Schönhöbel A.M. et al. // J. Low Temp. Phys. 2020. V. 6. No. 2. P. 141.
  4. Takahashi Y.K., Sepehri-Amin H., Ohkubo T. // Sci. Technol. Adv. Mater. 2021. V. 22. P. 449.
  5. Isnard O., Pop V. // J. Phys. Cond. Matter. 2009. V. 21. Art. No. 406003.
  6. Bacmann M., Baudelet C., Fruchart D et al. // J. Alloys Compounds. 2004. V. 383. No. 1–2. P. 166.
  7. Gorbunov D.I., Yasin S., Andreev A.V. et al. // J. Magn. Magn. Mater. 2014. V. 365. P. 56.
  8. Coehoorn R. // Phys. Rev. 1990. V. 41. Art. No. 11790.
  9. Makurenkova A.A., Ogawa D., Tozman P. et al. // J. Alloys Compounds. 2021. V. 861. Art. No. 158477.
  10. Tozman P., Sepehri-Amin H., Takahashi Y.K. et al. // Acta Mater. 2018. V. 153. P. 354.
  11. Landa A., Söderlind P., Moore E.E., Perron A. // Appl. Sci. 2022. V. 12. Art. No. 4860.
  12. Wiesinger G., Hilscher G. // in: Handbook of magnetic materials. V. 17. Elsevier, 2007. P. 293.
  13. Pankratov N.Y., Nikitin S.A., Iwasieczko W. et al. // J. Alloys Compounds. 2005. V. 404–406. P. 181.
  14. Tajabor N., Alinejad M.R., Motevalizadeh L. et al. // J. Alloys Compounds. 2007. V. 458. P. 91.
  15. Tereshina I.S., Pyatakov A.P., Tereshina-Chitrova E.A. et al. // AIP Advances. 2018. V. 8. Art. No. 125223.
  16. Bara J.J., Bogacz B.F., Pedziwiatr A.T. // J. Alloys Compounds. 2000. V. 307. P. 45.
  17. Gu Z. F., Zeng D. C., Liu Z. Y. et al. // J. Alloys Compounds. 2001. V. 321. P. 40.
  18. Tajabor N., Fruchart D., Gignoux D. et al. // J. Magn. Magn. Mater. 2007. V. 314. P. 122.
  19. Ke L., Johnson D.D. // Phys. Rev. B. 2016. V. 94. Art. No. 024423.
  20. Ogawa D., Yoshioka T., Xu X.D. et al. // J. Magn. Magn. Mater. 2020. V. 497. Art. No. 165965.
  21. Hirayama Y., Takahashi Y.K., Hirosawa S., Hono K. // Scripta. Mater. 2017. V. 138. P. 62.
  22. Каминская Т.П., Терёшина И.С. // Вестн. МГУ. Сер. 3. 2020. Т. 6. С. 99; Kaminskaya T.P., Tereshina I.S. // Moscow Univ. Phys. Bull. 2020. V. 75. P. 631.
  23. Nikitin S.A., Tereshina I.S., Verbetsky V.N. et al. // J. Alloys Compounds. 2001. V. 322. P. 42.
  24. Kazakov A.A., Kudrevatykh N.V., Markin P.E. et al. // J. Magn. Magn. Mater. 1995. V. 146. P. 208.
  25. Andreev A.V., Zadvorkin S.M. // Physica B. 1996. V. 225. P. 237.
  26. Ivanova T.I., Telegina I.V., Tskhadadze I.A. et al. // J. Alloys Compounds. 1998. V. 280. P. 20.
  27. Никитин С.А., Иванова Т.И., Панкратов Н.Ю. и др. // ФТТ. 2005. Т. 47. № 3. С. 501; Nikitin S.A., Ivanova T.I., Pankratov N.Y. et al. // Phys. Solid State. 2005. V. 47. No. 3. P. 517.
  28. Apostolov A., Bezdushnyi R., Damianova R. et al. // Phys. Stat. Sol. A. 1994. V. 143. P. 385.
  29. Piquer C., Hermann R.P., Grandjean F. et al. // J. Phys. Cond. Matter. 2003. V. 15. P. 7395.
  30. Zhuang Y.H., Huang X., Li J. // Z. Met.kd. 1996. V. 87. P. 213.
  31. Suharyana, Cadogan J.M., Li H.-S., Bowden G.J. // J. Appl. Phys. 1994. V. 75. P. 7122.
  32. Yang Y., Kong L., Song H. et al. // J. Appl. Phys. 1990. V. 67. P. 4632.
  33. Tereshina I.S., Nikitin S.A., Telegina I.V. et al. // J. Alloys Compounds. 1999. V. 283. P. 45.
  34. Tabatabai Y.Sh., Motevalizadeh L. // J. Magn. Magn. Mater. 2015. V. 379. P. 221.
  35. Zhang L.Y., Boltich E.B., Sinha V.K., Wallace W.E. // IEEE Trans. Magn. 1989. V. 25. P. 3303.
  36. Tereshina E., Telegina, I., Palewski // J. Alloys Compounds. 2005. V. 404–406. Spec. Iss. P. 208.
  37. Никитин С.А., Терешина И.С., Вербецкий В.Н., Саламова А.А. // ФТТ. 1998. № 2. С. 285; Nikitin S.A., Tereshina I.S., Verbetskiǐ V.N., Salamova A.A. // Phys. Solid State 1998. V. 40. No. 2. P. 258.
  38. Tereshina I.S., Nikitin S.A., Ivanova T.I., Skokov K.P. // J. Alloys Compounds. 1998. V. 275–277. P. 625.
  39. Kostyuchenko N.V., Tereshina I.S., Tereshina–Chitrova E.A. et al. // AIP Advances. 2022. V. 12. Art. No. 035050.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (156KB)
3.

Baixar (113KB)
4.

Baixar (107KB)

Declaração de direitos autorais © А.А. Макуренкова, М.В. Железный, Н.Ю. Панкратов, Е.С. Козлякова, И.С. Терёшина, С.А. Никитин, 2023