Crystal structure and EPR spectra of Mn2.25Co0.75BO5

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The results of studies of the structure of Mn2.25Co0.75BO5 using powder neutron diffraction are presented. To perform these studies, the crystals of ludwigite Mn2.25Co0.75BO5 were grown by the solution-melt method using a solvent based on Bi2Mo3O12 with a dilution of Na2CO3 carbonate. Boric acid H311BO3 was used as a boron-containing component. Measurements of powder neutron diffraction were carried out at a temperature of 100 K on a powder prepared by grinding grown single crystals. The spatial group and lattice parameters were determined by the Rietveld method using an experimentally obtained diffractogram. It is shown that the grown crystals Mn2.25Co0.75BO5 have the spatial group Pbam. The cobalt and manganese ion crystallographic positions have been determined from the powder neutron diffraction pattern analysis. The narrow throat mode was observed in the temperature dependence of the EPR spectra.

Texto integral

Acesso é fechado

Sobre autores

R. Eremina

Federal Research Center Kazan Scientific Center of Russian Academy of Sciences

Autor responsável pela correspondência
Email: REremina@yandex.ru

Zavoisky Physical-Technical Institute

Rússia, Kazan

E. Moshkina

Federal Research Center Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences

Email: REremina@yandex.ru

Kirensky Institute of Physics

Rússia, Krasnoyarsk

I. Yatsyk

Federal Research Center Kazan Scientific Center of Russian Academy of Sciences

Email: REremina@yandex.ru

Zavoisky Physical-Technical Institute

Rússia, Kazan

V. Shustov

Federal Research Center Kazan Scientific Center of Russian Academy of Sciences

Email: REremina@yandex.ru

Zavoisky Physical-Technical Institute

Rússia, Kazan

Bibliografia

  1. Bordet P., Suard E. // Phys. Rev. B. 2009. V. 79. Art. No. 144408.
  2. Bluhm K., Müller-Buschbaum H. // Z. Anorg. Allg. Chem. 1989. Bd. 579. P. 111.
  3. Li H. K., Wang L., Cai G.M. et al. // J. Alloys Compounds. 2013. V. 575. P. 104.
  4. Norrestam R., Dahl S., Bovin J.-O. // Zeitschriftfürristallographie. 1989. Bd. 187. P. 201.
  5. Freitas D.C., Continentino M.A., Guimarães R.B. et al. // Phys. Rev. B. 2008. V. 77. P. 184422.
  6. Attfield J.P., Clarke J.F., Perkins D.A. // J. Physics B. 1992. V. 180—181. P. 581.
  7. Neuendorf H., Gunβer W. // JMMM 1997. V. 173. No. 1-2. P. 117.
  8. Bezmaternykh L. N., Kolesnikova E.M., Eremin E.V. et al. // JMMM. 2014. V. 364. P. 55.
  9. Bezmaternykh L., Moshkina E., Eremin E. et al. // Solid State Phenom. 2015. V. 233—234. P. 133.
  10. Freitas D.C., Continentino M.A., Guimarães R B. et al. // Phys. Rev. B. 2009. V. 79. No. 13. Art. No. 134437.
  11. Freitas D.C., Guimarães R.B., Sanchez D.R. et al. // Phys. Rev. B. 2010. V. 81. Art. No. 024432.
  12. Medrano C.P.C., Freitas D.C., Sanchez D.R. et al. // Phys. Rev. B. 2015. V. 91. Art. No. 054402.
  13. Иванова Н.В., Казак Н.В., Князев Ю.В. и др. // ЖЭТФ. 2011. Т. 140. № 6. С. 1160; Ivanova N.B., Kazak N.V., Knyazev Y.V. et al. // JETP. 2011. V. 113. No. 6. P. 1015.
  14. Ivanova N.B., Platunov M.S., Knyazev Y.V. et al. // Phys. Solid State. 2012. V 54. No. 11. P. 2212.
  15. Еремина Р.М., Мошкина Е.М., Гаврилова Т.П. и др. // Изв. РАН. Сер. физ. 2019. Т. 83. № 7. С. 999; Eremina R.M., Moshkina E.M., Gavrilova T.P. et al. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 7. P. 912.
  16. Замкова Н.Г., Жандун В.С., Овчинников С.Г. // Письма в ЖЭТФ. 2023. Т. 118. № 5. С. 323; Zamkova N.G., Zhanduna V.S., Ovchinnikov S.G. // JETP Lett. 2023. V. 118. No. 5. P. 321.
  17. Казак Н.В., Бельская Н.А., Мошкина Е.М. и др. // Письма в ЖЭТФ. 2021. Т. 114. № 2. C. 89; Kazak N.V., Belskaya N.A., Moshkina E.M. et al. // JETP Lett. 2021. V. 114. No. 2. P. 92.
  18. Stenger C. G., Verschoor G.C., Ijdo D.J. // Mater. Res. Bull. 1973. V. 8. No. 11. P. 1285.
  19. Bluhm K., Müller-Buschbaum H. // J. Less Comm. Metals. 1989. V. 147. No. 1. P. 133.
  20. Freitas D.C., Medrano C.P.C., Sanchez D.R. et al. // Phys. Rev. B. 2016. V. 94. Art. No. 174409.
  21. Vavilova E., Vasilchikova T., Vasiliev A. et al. // Phys. Rev. B. 2023. V.107(5). Art. No. 054411.
  22. Moshkina E., Bovina A. et al. // Cryst. Eng. Comm. 2021. V. 23. P. 5624.
  23. Lutterotti L. // Nucl. Instrum. Meth. Phys. Res. B. 2010. V. 268. P. 334.
  24. Popov D.V., Gavrilova T.P., Gilmutdinov I.F. et al. // J. Phys. Chem. Solids. 2021. V. 148. Art. No. 109695.
  25. Kochelaev B.I., Kan L., Elschner B. et al. // Phys. Rev. B. 1994. V. 49. No. 18. P. 13106.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Structure of ludwigite.

Baixar (208KB)
3. Fig. 2. The obtained single crystal of ludwigite Mn2.25Co0.7511BO5

Baixar (37KB)
4. Fig. 3. Temperature dependence of the EPR spectra of Mn2.25Co0.75BO5 powder in the X-band (9.4 GHz), the spectra are presented between 100 and 260 K with a step of 10 K. Experimental spectra are shown by open symbols, solid lines are approximations according to formula (1).

Baixar (774KB)
5. Fig. 4. Neutron diffraction patterns of Mn2.25Co0.7511BO5 at a temperature of 100 K.

Baixar (284KB)
6. Fig. 5. Temperature dependences of the resonant magnetic field value (a); width (b) and inverse integral intensity (c) of the EPR line in Mn2.25Co0.75BO5.

Baixar (240KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024