Влияние фактора заполнения на коэффициент отражения и экваториальный эффект Керра двумерных магнитоплазмонных кристаллов на основе пермаллоя
- Авторы: Мурзин Д.В.1, Беляев В.К.1, Гриценко К.А.1, Родионова В.В.1
-
Учреждения:
- Федеральное государственное автономное образовательное учреждение высшего образования “Балтийский федеральный университет имени Иммануила Канта”
- Выпуск: Том 88, № 4 (2024)
- Страницы: 689-694
- Раздел: Магнитные явления и умные композитные материалы
- URL: https://cardiosomatics.ru/0367-6765/article/view/654719
- DOI: https://doi.org/10.31857/S0367676524040241
- EDN: https://elibrary.ru/QGGHAT
- ID: 654719
Цитировать
Аннотация
Изучен коэффициент отражения и экваториальный эффект Керра для серии двумерных магнитоплазмонных кристаллов на основе серебра, пермаллоя Ni80Fe20 и нитрида кремния Si3N4. Показано, что фактор заполнения образцов нелинейно влияет на их оптические и магнитооптические свойства. Максимальная величина эффекта Керра составляет 0.88% при факторе заполнения равном 0.77.
Об авторах
Д. В. Мурзин
Федеральное государственное автономное образовательное учреждение высшего образования “Балтийский федеральный университет имени Иммануила Канта”
Автор, ответственный за переписку.
Email: dvmurzin@yandex.ru
Россия, Калининград
В. К. Беляев
Федеральное государственное автономное образовательное учреждение высшего образования “Балтийский федеральный университет имени Иммануила Канта”
Email: dvmurzin@yandex.ru
Россия, Калининград
К. А. Гриценко
Федеральное государственное автономное образовательное учреждение высшего образования “Балтийский федеральный университет имени Иммануила Канта”
Email: dvmurzin@yandex.ru
Россия, Калининград
В. В. Родионова
Федеральное государственное автономное образовательное учреждение высшего образования “Балтийский федеральный университет имени Иммануила Канта”
Email: dvmurzin@yandex.ru
Россия, Калининград
Список литературы
- Ripka P. Magnetic sensors and magnetometers. Artech House, 2021. 416 p.
- Tierney T.M., Holmes N., Mellor S. et al. // NeuroImage. 2019. V. 199. P. 598.
- Rondin L., Tetienne J-P., Hingant T. et al. // Rep. Prog. Phys. 2014. V. 77. No. 5. Art. No. 056503.
- Gutiérrez Y., Brown A.S., Moreno F. et al. // J. Appl. Phys. 2020. V. 128. No. 8. Art. No. 080901.
- Wu Y., Xie P., Ding Q. et al. // J. Appl. Phys. 2023. V. 133. No. 3. Art. No. 030902.
- Romodina M.N., Soboleva I.V., Musorin A.I. et al. // Phys. Rev. B. 2017. V. 96. No. 8. Art. No. 081401.
- Belotelov V.I., Akimov I.A., Pohl M. et al. // Nature Nanotechnol. 2011. V. 6. No. 6. P. 370.
- Kiryanov M.A., Frolov A.Y., Novikov I.A. et al. // APL Photonics. 2022. V. 7. No. 2. Art. No. 026104.
- Ávalos L., González-Alcalde A.K., Chaikina E.I. et al. // Opt. Commun. 2021. V. 500. Art. No. 127324
- Knyazev G.A., Kapralov P.O., Gusev N.A. et al. // ACS Photonics. 2018. V. 5. No. 12. P. 4951.
- Belyaev V.K., Rodionova V.V., Grunin A.A. et al. // Sci. Reports. 2020. V. 10. No. 1. Art. No. 7133.
- Murzin D., Belyaev V.K., Groß F. et al. // J. Magn. Magn. Mater. 2023. V. 588. Art. No. 171398.
- Maccaferri N., Inchausti X., García-Martín A. et al. // ACS Photonics. 2015. V. 2. No. 12. P. 1769.
- Kravets V.G., Kabashin A.V., Barnes W.L. et al. // Chem. Rev. 2018. V. 188. No. 12. P. 5912.
Дополнительные файлы
