NaYF4: Yb, Er based nanosensors testing for temperature measurements in biological media

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

NaYF4: Yb, Er particles were synthesized by hydrothermal method in the form of rods of 1.4 µm × 70 nm average size. Their surface was modified with L-cysteine, which provided hydrophilic properties. It was shown that the modified particles exhibit upconversion luminescence in the visible spectral range upon 980 nm laser excitation. Their temperature calibration in physiological solution was carried out. The possibility of remote temperature measurement in the biologically significant range of temperature (293—323 K) with an average sensitivity of 43 × 10—4 K—1 and an accuracy of ±1.0 K was shown. A demonstration experiment was performed on the living nervous system of the grape snail Helix lucorum. The nanosensors have been successfully used for bioimaging and remote low-invasive temperature measurement with a spatial resolution of 10 µm.

全文:

受限制的访问

作者简介

A. Leontyev

Zavoisky Physical-Technical Institute of the Kazan Scientific Center of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: vgnik@mail.ru
俄罗斯联邦, Kazan

L. Nutrdinova

Zavoisky Physical-Technical Institute of the Kazan Scientific Center of the Russian Academy of Sciences; Kazan Federal University

Email: vgnik@mail.ru
俄罗斯联邦, Kazan; Kazan

E. Mityushkin

Zavoisky Physical-Technical Institute of the Kazan Scientific Center of the Russian Academy of Sciences

Email: vgnik@mail.ru
俄罗斯联邦, Kazan

A. Shmelev

Zavoisky Physical-Technical Institute of the Kazan Scientific Center of the Russian Academy of Sciences

Email: vgnik@mail.ru
俄罗斯联邦, Kazan

D. Zharkov

Zavoisky Physical-Technical Institute of the Kazan Scientific Center of the Russian Academy of Sciences

Email: vgnik@mail.ru
俄罗斯联邦, Kazan

V. Andrianov

Zavoisky Physical-Technical Institute of the Kazan Scientific Center of the Russian Academy of Sciences; Kazan Federal University

Email: vgnik@mail.ru
俄罗斯联邦, Kazan; Kazan

L. Muranova

Zavoisky Physical-Technical Institute of the Kazan Scientific Center of the Russian Academy of Sciences; Kazan Federal University

Email: vgnik@mail.ru
俄罗斯联邦, Kazan; Kazan

Kh. Gainutdinov

Zavoisky Physical-Technical Institute of the Kazan Scientific Center of the Russian Academy of Sciences; Kazan Federal University

Email: vgnik@mail.ru
俄罗斯联邦, Kazan; Kazan

V. Nikiforov

Zavoisky Physical-Technical Institute of the Kazan Scientific Center of the Russian Academy of Sciences

Email: vgnik@mail.ru
俄罗斯联邦, Kazan

参考

  1. Chen G., Qiu H., Prasad P.N., Chen X. // Chem. Rev. 2014. V. 114. No. 10. P. 5161.
  2. Ding M., Chen D., Yin S. et al. // Sci. Reports. 2015. V. 5. P. 12745.
  3. Pang G., Zhang Y., Wang X. et al. // Nano Today. 2012. V. 40. Art. No. 101264.
  4. Li S., Wei X., Li S. et al. // Int. J. Nanomed. 2020. V. 15. P. 9431.
  5. Jiang W., Yi J., Li X. et al. // Biosensors. 2022. V. 12. No. 11. Art. No. 1036.
  6. Arai M.S., de Camargo A.S.S. // Nanoscale Advances. 2021. V. 3. No. 18. P. 5135.
  7. Lv H., Liu J., Wang Y. // Front. Chem. 2022. V. 10. Art. No. 996264.
  8. Chen W., Xie Y., Wang M., Li C. // Front. Chem. 2020. V. 8. Art. No. 596658.
  9. Lee G., Park Y.I. // Nanomaterials. 2018. V. 8. No. 7. P. 511.
  10. Zhang L., Jin D., Stenzel M.H. // Biomacromol. 2021. V. 22. No. 8. P. 3168.
  11. Ghazy A., Safdar M., Lastusaari M. et al. // Sol. Energy Mater. Sol. Cells. 2021. V. 230. Art. No. 111234.
  12. Richards B.S., Hudry D., Busko D. et al. // Chem. Rev. 2021. V. 121. No. 15. P. 9165.
  13. Chaudhary B., Kshetri Y.K., Kim T.H. // In: Upconversion nanoparticles (UCNPs) for functional applications. POSP. V. 24. Singapore: Springer Nature, 2023. P. 193.
  14. Qingqing K., Xiaochun H., Chengxue D. // Phys. Chem. Chem. Phys. 2023. V. 25. No. 27. P. 17759.
  15. Yang Y., Wang L., Wan B. et al. // Front. Bioeng. Biotechnol. 2019. V. 15. No. 7. P. 320.
  16. Hilderbrand S.A., Shao F., Salthouse C. // Chem. Commun. 2009. No. 28. P. 4188.
  17. Larson D.R., Zipfel W.R., Williams R.M. et al. // Science. 2003. V. 300. P. 1434.
  18. van de Rijke F., Zijlmans H., Li S. et al. // Nature Biotechnol. 2001. V. 19. P. 273.
  19. Nikiforov V.G., Leontyev A.V., Shmelev A.G. et al. // Laser Phys. Lett. 2019. V. 16. No. 6. Art. No. 065901.
  20. Leontyev A.V., Shmelev A.G., Zharkov D.K. et al. // Laser Phys. Lett. 2019. V. 16. No. 1. Art. No. 015901.
  21. Wu X.J., Zhang Q.B., Wang X. et al. // Eur. J. Inorg. Chem. 2011. V. 2011. No. 13. P. 2158.
  22. Chatterjee D.K., Rufaihah A.J., Zhang Y. // Biomaterials. 2008. V. 29. No. 7. P. 937.
  23. Johnson N.J.J., Sangeetha N.M., Boye J.C., van Veggel F. C.J.M. // Nanoscale. 2010. V. 2. No. 5. P. 77.
  24. Park Y.I., Kim J.H., Lee K.T. et al. // Adv. Mater. 2009. V. 21. No. 44. P. 4467.
  25. Jalil A.R., Zhang Y. // Biomaterials. 2008. V. 29. No. 30. P. 4122.
  26. Xiong L.Q., Yang T.S., Yang Y. et al. // Biomaterials. 2010. V. 31. No. 27. P. 7078.
  27. Митюшкин Е.О., Жарков Д.К., Леонтьев А.В. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 12. С. 1724; Mityushkin E.O., Zharkov D.K., Leontyev A.V. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 12. P. 1806.
  28. Kaiser M., Wurth C., Kraft M. et al. // Nano Res. 2019. V. 12. P. 1871.
  29. Ruhl P., Wang D., Garwe F.R. et al. // J. Luminescence. 2021. V. 232. Art. No. 117860.
  30. Леонтьев А.В., Жарков Д.К., Шмелев А.Г. и др. // Изв. РАН. Сер. физ. 2019. Т. 83. № 12. С. 1644; Leontyev A.V., Zharkov D.K., Shmelev A.G. et al. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. № 12. P. 1484.
  31. Шмелев А.Г., Никифоров В.Г., Жарков Д.К. и др. // Изв. РАН. Сер. физ. 2020. Т. 84. № 12. С. 1696; Shmelev A. G., Nikiforov V.G., Leontyev A.V., Zharkov D.K. et al. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. № 12. P. 1439.
  32. Жарков Д.К., Шмелев А.Г., Леонтьев А.В. и др. // Изв. РАН. Сер. физ. 2020. Т. 84. № 3. С. 317; Zharkov D.K., Shmelev A.G., Leontyev A.V. et al. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. № 3. P. 241.
  33. Жарков Д.К., Шмелев А.Г., Леонтьев А.В. и др. // Изв. РАН. Сер. физ. 2020. Т. 84. № 12. С. 1746; Zharkov D.K., Shmelev A.G., Leontyev A.V. et al. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. № 12. P. 1486.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. SEM image of NaYF4: Yb, Er nanoparticles after surface modification with L-cysteine (a); size distribution histogram of NaYF4: Yb, Er nanoparticles (b)

下载 (403KB)
3. Fig. 2. Upconversion luminescence spectrum of NaYF4: Yb, Er nanoparticles (a); Energy level diagram and energy transfer processes in the upconversion system Yb3+ - Er3+ (b). Solid arrows show radiative transitions, dashed arrows and lines - energy transfer and non-radiative transitions

下载 (176KB)
4. Fig. 3. Upconversion luminescence spectra of NaYF4: Yb, Er obtained at different temperature. The experiments were performed at the excitation radiation power of 0.5 W/cm2 (a). Dependences of the relative population of 2H11/2 and 4S3/2 levels of Er3+ RHS ions on the inverse temperature 1/T (purple dots - experimental data, purple curve - approximation by function (1)) and sensitivity S on the temperature T (orange curve) (b)

下载 (242KB)
5. Fig. 4. Photograph of a preparation of the nervous system of the grape snail Helix lucorum (upper image), confocal microscope scan showing the luminescence intensity of ANFs applied to the preparation (lower image)

下载 (274KB)

版权所有 © Russian Academy of Sciences, 2024