Investigation of the third harmonic generation in a high-current relativistic Ka-band gyrotron

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Theoretical and experimental investigations of radiation generation in the frequency multiplication mode at the third harmonic in a high-current Ka-band gyrotron have been carried out. Within the framework of three-dimensional PIC-simulation, it is shown that the nonlinear transformation coefficient in the W-band can reach values of 0.5%. Experimental data on registration of radiation in this range are presented.

全文:

受限制的访问

作者简介

E. Abubakirov

Federal Research Center Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences

Email: leontiev@ipfran.ru
俄罗斯联邦, Nizhny Novgorod

A. Denisenko

Federal Research Center Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences

Email: leontiev@ipfran.ru
俄罗斯联邦, Nizhny Novgorod

A. Leontyev

Federal Research Center Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences; Lobachevsky National Research Nizhny Novgorod State University

编辑信件的主要联系方式.
Email: leontiev@ipfran.ru
俄罗斯联邦, Nizhny Novgorod; Nizhny Novgorod

K. Mineev

Federal Research Center Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences; Lobachevsky National Research Nizhny Novgorod State University

Email: leontiev@ipfran.ru
俄罗斯联邦, Nizhny Novgorod; Nizhny Novgorod

R. Rozental

Federal Research Center Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences; Lobachevsky National Research Nizhny Novgorod State University

Email: leontiev@ipfran.ru
俄罗斯联邦, Nizhny Novgorod; Nizhny Novgorod

参考

  1. Palitsin A.V., Rodin Yu.V., Goykhman M.B. et al. // IEEE Electron Device Lett. 2022. V. 44. No. 2. P. 317.
  2. Wang J., Wang G., Wang D. et al. // Sci. Reports. 2018. V. 8. No. 1. Art. No. 6978.
  3. Данилов Ю.Ю., Леонтьев А.Н., Малкин А.М. и др. // ДАН. Физ.-техн. науки. 2022. Т. 504. С. 3.
  4. Данилов Ю.Ю., Денисенко А.Н., Леонтьев А.Н. и др. // Изв. вузов. Радиофизика. Т. 65. № 5–6. С. 448.
  5. Rozental R.M., Danilov Yu.Yu., Leontyev A.N. et al. // IEEE Trans. Electron Dev. 2022. V. 69. No. 3. P. 1451.
  6. Завольский Н.А., Запевалов В.Е., Моисеев М.А. // Изв. вузов. Радиофизика. Т. 44. № 4. С. 345.
  7. Thumm M. // J. Infrared Millim. Terahertz Waves. 2020. V. 41. No. 1. P. 1.
  8. Thumm M., Denisov G.G., Sakamoto K., Tran M.Q. // Nucl. Fusion. 2019. V. 59. No. 7. Art. No. 073001.
  9. Zaitsev N.I., Ginzburg N.S., Ilyakov E.V. et al. // IEEE Trans. Plasma Sci. 2002. V. 30. No. 3. P. 840.
  10. Зайцев Н.И., Завольский Н.А., Запевалов В.Е. и др. // Изв. вузов. Радиофизика. 2003. Т. 46. № 10. С. 914.
  11. Abubakirov E.B., Chirkov A.V., Denisov G.G. et al. // IEEE Trans. Electron Dev. 2017. V. 64. No. 4. P. 1865.
  12. Запевалов В.Е., Лыгин В.К., Малыгин О.В. и др. // Изв. вузов. Радиофизика. 2007. Т. 50. № 6. С. 461.
  13. Абубакиров Э.Б., Денисенко А.Н., Конюшков А.П. и др. // Изв. РАН. Сер. физ. 2018. Т. 82. № 1. С. 56; Abubakirov E.B., Denisenko A.N., Konyushkov A.P. et al. // Bull. Russ. Acad. Sci. Phys. 2018. V. 82. No. 1. P. 48.
  14. Glyavin M. Yu., Luchinin A.G., Golubiatnikov G. Yu. // Phys. Rev. Lett. 2008. V. 100. No. 1. Art. No. 015101.
  15. Bratman V.L., Kalynov Yu.K., Manuilov V.N. // Phys. Rev. Lett. 2009. V. 102. No. 24. Art. No. 245101.
  16. Bratman V.L., Fedotov A.E., Kalynov Yu.K. et al. // IEEE Trans. Plasma Sci. 1999. V. 27. No. 2. P. 456.
  17. Glyavin M., Zotova I., Rozental R. et al. // J. Infrared Millim. THz Waves. 2020. V. 41. P. 1245.
  18. Golubiatnikov G.Yu., Koshelev M.A., Tsvetkov A.I. et al. // IEEE Trans. THZ Sci. Tech. 2020. V. 10. No. 5. P. 502.
  19. Братман В.Л., Гинзбург Н.С., Нусинович Г.С. и др. // В кн.: Релятивистская высокочастотная электроника. Горький: ИПФ АН СССР, 1979. С. 157.
  20. Леонтьев А.Н., Розенталь Р.М., Гинзбург Н.С. и др. // Письма в ЖТФ. 2022. Т. 48. № 24. C. 11.
  21. Леонтьев А.Н., Розенталь Р.М., Гинзбург Н.С. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 1. С. 57; Leontyev A.N., Rozental P.M., Ginzburg N.S. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 1. P. 46.
  22. Denisov G.G., Zotova I.V., Malkin A.M. et al. // Phys. Rev. E. 2022. V. 106. No. 2. Art. No. L023203.
  23. Denisov G., Zotova I., Zheleznov I. et al. // Appl. Science. 2022. V. 12. Art. No. 11370.
  24. Danilov Yu.Yu., Leontyev A.N., Leontyev N.V. et al. // IEEE Trans. Electron Dev. 2021. V. 68. No. 4. P. 2130.
  25. Данилов Ю.Ю., Денисенко А.Н., Леонтьев А.Н. и др. // Изв. вузов. Радиофизика. 2022. Т. 65. № 5–6. С. 448.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Geometry of the interaction space in three-dimensional modeling using the large particle method, instantaneous position of macroparticles and their energy distribution (a). Calculated dependence of the power at the fundamental harmonic (mode TE–4.2) and at the third harmonic of the gyrofrequency (mode TM–12.4) on the magnetic field strength (b).

下载 (225KB)
3. Fig. 2. External appearance of the experimental model of a relativistic high-current gyrotron.

下载 (55KB)
4. Fig. 3. Scheme for measuring the parameters of gyrotron radiation in the Ka- and W-bands. 1 – gyrotron output window, 2 – waveguides, 3 – calorimeter; 4, 5 – directional couplers; 6, 7, 8, 9 – attenuators; 10, 12 – microwave detectors; 11, 13 – mixers; 14, 15 – heterodynes; 16 – oscilloscope.

下载 (52KB)
5. Fig. 4. Experimentally measured pulse shapes at the fundamental (a) and third (c) harmonics of the gyrofrequency and the corresponding spectra (b) and (d).

下载 (377KB)

版权所有 © Russian Academy of Sciences, 2024