Ghost Fiber Optic 3D Endoscopy
- Authors: Belinskiy A.V.1, Gostev P.P.1, Magnitskiy S.A.1, Chirkin A.S1
- 
							Affiliations: 
							- Faculty of Physics, Moscow State University
 
- Issue: Vol 117, No 3-4 (2) (2023)
- Pages: 207-212
- Section: Articles
- URL: https://cardiosomatics.ru/0370-274X/article/view/663509
- DOI: https://doi.org/10.31857/S1234567823030059
- EDN: https://elibrary.ru/OWKTDT
- ID: 663509
Cite item
Abstract
A new type of ghost fiber optic endoscopy has been proposed to obtain ghost images of three-dimensional optically transparent objects. The method is based on spatial and temporal correlation of light beams formed in a bundle of single-mode fibers exposed in the transverse direction to femtosecond laser pulses. Resolution in the depth of an object is ensured by an original algorithm to reconstruct images, which involves both the properties of femtosecond radiation and the features of light propagation in an inhomogeneous scattering medium. The effectiveness of the proposed method has been confirmed by a numerical simulation by an example of an octahedron with a layered structure.
About the authors
A. V. Belinskiy
Faculty of Physics, Moscow State University
														Email: belinsky@physics.msu.ru
				                					                																			                												                								119991, Moscow, Russia						
P. P. Gostev
Faculty of Physics, Moscow State University
														Email: gostev.pavel@physics.msu.ru
				                					                																			                												                								119991, Moscow, Russia						
S. A. Magnitskiy
Faculty of Physics, Moscow State University
														Email: sergeymagnitskiy@gmail.com
				                					                																			                												                								119991, Moscow, Russia						
A. S Chirkin
Faculty of Physics, Moscow State University
							Author for correspondence.
							Email: aschirkin@physics.msu.ru
				                					                																			                												                								119991, Moscow, Russia						
References
- M. P. Edgar, G.M. Gibson, M. J. Padgett, Nature Photon. 13, 13 (2019).
- M. F. Duarte, M.A. Davenport, D. Takhar, J.N. Laska, T. Sun, K.F. Kelly, and R.G. Baraniuk, IEEE Sig. Pro. Mag. 25, 83 (2008).
- Z. Zhang, X. Ma, and J. Zhong, Nat. Commun. 6, 1 (2015).
- Z. Zhang, X. Wang, G. Zheng, and J. Zhong, Opt. Express 25, 19619 (2017).
- L. Martınez-Le'on, P. Clemente, Y. Mori, V. Climent, J. Lancis, and E. Tajahuerce, Opt. Express 25, 4975 (2017).
- B. Lochocki, A. Gambın, S. Manzanera, E. Irles, E. Tajahuerce, J. Lancis, and P. Artal, Optica 3, 1056 (2016).
- R. Dutta, S. Manzanera, A. Gambın-Regadera, E. Irles, E. Tajahuerce, J. Lancis, and P. Artal, Biomed. Opt. Express 10, 4159 (2019).
- N. Radwell, K. J. Mitchell, G.M. Gibson, M. P. Edgar, R. Bowman, and M. J. Padgett, Optica 1, 285 (2014).
- P. Clemente, V. Dur'an, E. Tajahuerce, P. Andr'es, V. Climent, and J. Lancis, Opt. Lett. 38, 2524 (2013).
- P. Clemente, V. Duran, E. Tajahuerce, and J. Lancis, Phys. Rev. A 86, 041803 (2012).
- D.B. Phillips, M.-J. Sun, J.M. Taylor, M.P. Edgar, S.M. Barnett, G.M. Gibson, and M. J. Padgett, Sci. Adv. 3, e1601782 (2017).
- Z. Wei, J. Zhang, Z. Xu, Y. Liu, Y. Huang, and X. Fan, IEEE Photonics J. 11, 1 (2019).
- Y.Wang, F. Wang, R. Liu, P. Zhang, H. Gao, and F. Li, Opt. Express 27, 5973 (2019).
- F. Magalh˜aes, F. M. Ara'ujo, M. Correia, M. Abolbashari, and F. Farahi, Opt. Eng. 51, 071406 (2012).
- K. Shibuya, T. Minamikawa, Y. Mizutani, H. Yamamoto, K. Minoshima, T. Yasui, and T. Iwata, Opt. Express 25, 21947 (2017).
- B. Sun, M. P. Edgar, R. Bowman, L.E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, Science 340, 844 (2013).
- Z. Zhang, S. Liu, J. Peng, M. Yao, G. Zheng, and J. Zhong, Optica 5, 315 (2018).
- C. Zhang, W. He, B. Han, M. Liao, D. Lu, X. Peng, and C. Xu, Opt. Express 27, 13469 (2019).
- Z. Zhang, S. Jiao, M. Yao, X. Li, and J. Zhong, Opt. Express 26, 14578 (2018).
- Д.П. Агапов, И.А. Беловолов, П.П. Гостев, С.А. Магницикй, Д.Н. Фроловцев, А.С. Чиркин, ЖЭТФ 162, 215 (2022)
- D. Agapov, I. Belovolov, P. Gostev, S. Magnitskii, D. Frolovtsev, and A. Chirkin, JETP 135(2), 188 (2022).
- A. Gatti, E. Brambilla, M. Bache, and L.A. Lugiato, Phys. Rev. A 70, 013802 (2004).
- Д.А. Балакин, Д.П. Агапов, П.П. Гостев, С.А. Магницкий, Д.Н. Фроловцев, А.С. Чиркин,ЖЭТФ 162, 569 (2022)
- D.A. Balakin, D.P. Agapov, P.P. Gostev, S.A. Magnitskiy, D.N. Frolovtsev, and A. S. Chirkin, JETP 135(6), 779 (2022).
- P.-A. Moreau, E. Toninelli, T. Gregory, and M. J. Padgett, Laser and Photonics Reviews 12, 1700143 (2018).
- Ю.П. Пытьев, Методы математического моделирования измерительно-вычислительных систем, Физматлит, М. (2012).
- D. Balakin, A. Belinsky, and A. Chirkin, Quant. Inform. Proc. 18, 1 (2019).
- A. Chirkin, P. Gostev, D. Agapov, and S. Magnitskiy, Las. Phys. Lett. 15, 115404 (2018).
- S. Magnitskiy, D. Agapov, and A. Chirkin, Opt. Lett. 45, 3641 (2020).
- S. Magnitskiy, D. Agapov, I. Belovolov, P. Gostev, D. Frolovtsev, and A. Chirkin, Moscow Univer. Phys. Bull. 76, 424 (2021).
- S. Magnitskiy, D. Agapov, and A. Chirkin, Opt. Lett. 47, 754 (2022).
- А.В. Белинский, Д.Н. Клышко, ЖЭТФ 105, 487 (1994).
- B. I. Erkmen and J.H. Shapiro, Adv. Opt. Phot. 2, 405 (2010).
- А.В. Белинский,Журнал научной и прикладной фотографии и кинематографии 3, 198 (1983).
- P.P. Gostev, ghost_images, https://github.com/vongostev/ghost_images.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 

 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					