NMR evidence for a pseudogap in Pb-doped Bi:2201 single crystal
- Authors: Vyaselev O.M1
- 
							Affiliations: 
							- Institute of Solid State Physics, Russian Academy of Sciences
 
- Issue: Vol 122, No 1-2 (2025)
- Pages: 100-102
- Section: Articles
- URL: https://cardiosomatics.ru/0370-274X/article/view/693447
- DOI: https://doi.org/10.31857/S0370274X25070144
- EDN: https://elibrary.ru/KIYIUK
- ID: 693447
Cite item
Abstract
A 63Cu nuclear magnetic resonance (NMR) study of a Pb-doped Bi:2201 system, Bi1.6Pb0.4Sr2.05CuOy, is presented. The temperature dependencies of the NMR peak shift and the nuclear spin-lattice relaxation (SLR) rate reveal the pseudogap that opens near T* = 60 K, significantly above the superconducting critical temperature Tc ≃ 9 K at the NMR experiment field, 7 T oriented H ∥ c. The noticeable disparity between Tc and T* and the behavior of Cu SLR at T > T* imply the underdoped state of the studied system. A relatively weak effect of the magnetic field on the superconductivity evidenced from small (≈7 K) shift of the zero-field Tc0 = 16 ± 1 K under the applied 7 T field suggests high upper critical field, Hc2, unusual for compounds with as low Tc0.
About the authors
O. M Vyaselev
Institute of Solid State Physics, Russian Academy of Sciences
							Author for correspondence.
							Email: vyasel@issp.ac.ru
				                					                																			                												                								Chernogolovka, Russia						
References
- P. C. Hammel, M. Takigawa, R. H. Heffner, Z. Fisk, and K. C. Ott, Phys. Rev. Lett. 63, 1992 (1989).
- M. Takigawa, A. P. Reyes, P. C. Hammel, J. D. Thompson, R. H. Heffner, Z. Fisk, and K. C. Ott, Phys. Rev. B 43, 247 (1991).
- W. W. Warren, R. E. Walstedt, G. F. Brennert, R. J. Cava, R. Tycko, R. F. Bell, and G. Dabbagh, Phys. Rev. Lett. 62, 1193 (1989).
- J. Rossat-Mignod, L. P. Regnault, C. Vettier, P. Bourges, P. Burlet, J. Bossy, J. Y. Henry, and G. Lapertot, J. Magn. Magn. Mater. 116, 336 (1992).
- Ch. Renner, B. Revaz, J.-Y. Genoud, K. Kadowaki, and Ø. Fischer, Phys. Rev. Lett. 80, 149 (1998).
- B. L. Kang, M. Z. Shi, D. Zhao, S. J. Li, J. Li, L. X. Zheng, D. W. Song, L. P. Nie, T. Wu, and X. H. Chen, Chin. Phys. Lett. 39, 127401 (2022).
- C. Varma, Nature 468, 184 (2010).
- V. J. Emery and S. A. Kivelson, Nature 374, 434 (1995).
- K. Gorny, O. M. Vyaselev, J. A. Martindale, V. A. Nandor, C. H. Pennington, P. C. Hammel, W. L. Hults, J. L. Smith, P. L. Kuhns, A. P. Reyes, and W. G. Moulton, Phys. Rev. Lett. 82, 177 (1999).
- V. M. Krasnov, A. Yurgens, D. Winkler, P. Delsing, and T. Claeson, Phys. Rev. Lett. 84, 5860 (2000).
- V. M. Krasnov, Phys. Rev. B 65, 140504 (2002).
- T. Jacobs, S. O. Katterwe, H. Motzkau, A. Rydh, Maljuk, T. Helm, C. Putzke, E. Kampert, M. V. Kartsovnik, and V. M. Krasnov, Phys. Rev. B 86, 214506 (2012).
- B. Fauqu´e, Y. Sidis, V. Hinkov, S. Pailh`es, C. T. Lin, X. Chaud, and P. Bourges, Phys. Rev. Lett. 96, 197001 (2006).
- T. Kondo, T. Takeuchi, A. Kaminski, S. Tsuda, and S. Shin, Phys. Rev. Lett. 98, 267004 (2007).
- M. Roslova, B. Bu¨chner, and A. Maljuk, Crystals 14, 270 (2024).
- G.-q. Zheng, P. L. Kuhns, A. P. Reyes, B. Liang, and C. T. Lin, Phys. Rev. Lett. 94, 047006 (2005).
- K. Ishida, K. Yoshida, T. Mito, Y. Tokunaga, Y. Kitaoka, K. Asayama, Y. Nakayama, J. Shimoyama, and K. Kishio, Phys. Rev. B 58, R5960 (1998).
- Y. Kitaoka, K. Fujiwara, K. Ishida, K. Asayama, Y. Shimakawa, T. Manako, and Y. Kubo, Physica C 179, 107 (1991).
- V. F. Gantmakher, G. A. Emelchenko, I. G. Naumenko, and G. E. Tsydynzhapov, JETP Lett. 72, 21 (2000).
- L. Ya. Vinnikov, A. G. Yukina, V. N. Zverev, D. Shovkun, and A. B. Kulakov, JETP 119, 514 (2014).
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 

 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					