Diffusive Modes of Two-Band Fermions Under Number-Conserving Dissipative Dynamics
- Autores: Lyublinskaya A.A.1,2, Burmistrov I.S.1,3
- 
							Afiliações: 
							- Landau Institute for Theoretical Physics, Russian Academy of Sciences
- Moscow Institute for Physics and Technology (National Research University)
- Laboratory for Condensed Matter Physics, HSE University
 
- Edição: Volume 118, Nº 7-8 (10) (2023)
- Páginas: 538-545
- Seção: Articles
- URL: https://cardiosomatics.ru/0370-274X/article/view/661574
- DOI: https://doi.org/10.31857/S1234567823190114
- EDN: https://elibrary.ru/XRXESZ
- ID: 661574
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Driven-dissipative protocols are proposed to control and create nontrivial quantum many-body correlated states. Protocols conserving the number of particles stand apart. As well-known, in quantum systems with the unitary dynamics the particle number conservation and random scattering yield diffusive behavior of two-particle excitations (diffusons and cooperons). Existence of diffusive modes in the particle-number-conserving dissipative dynamics is not well studied yet. We explicitly demonstrate the existence of diffusons in a paradigmatic model of a two-band system, with dissipative dynamics aiming to empty one fermion band and to populate the other one. The studied model is generalization of the model introduced in F. Tonielli, J.C. Budich, A. Altland, and S. Diehl, Phys. Rev. Lett. 124, 240404 (2020). We find how the diffusion coefficient depends on details of a model and the rate of dissipation. We discuss how the existence of diffusive modes complicates engineering of macroscopic many-body correlated states.
Sobre autores
A. Lyublinskaya
Landau Institute for Theoretical Physics, Russian Academy of Sciences;Moscow Institute for Physics and Technology (National Research University)
														Email: burmi@itp.ac.ru
				                					                																			                												                								142432, Chernogolovka, Moscow region, Russia;141700, Dolgoprudnyi, Moscow region, Russia						
I. Burmistrov
Landau Institute for Theoretical Physics, Russian Academy of Sciences;Laboratory for Condensed Matter Physics, HSE University
							Autor responsável pela correspondência
							Email: burmi@itp.ac.ru
				                					                																			                												                								142432, Chernogolovka, Moscow region, Russia;141700, Dolgoprudnyi, Moscow region, Russia						
Bibliografia
- L.M. Sieberer, M. Buchhold, and S. Diehl, Rep. Prog. Phys. 79, 096001 (2016).
- K. Le Hur, L. Henriet, L. Herviou, K. Plekhanov, A. Petrescu, T. Goren, M. Schiro, C. Mora, and P.P. Orth, C. R. Phys. 19, 451 (2018).
- B. Skinner, J. Ruhman, and A. Nahum, Phys. Rev. X 9, 031009 (2019).
- M. S. Rudner and N.H. Lindner, Nat. Rev. Phys. 2, 229 (2020).
- F. Thompson and A. Kamenev, Ann. Phys. (N.Y.) 455, 169385 (2023).
- W. Lechner and P. Zoller, Phys. Rev. Lett. 111, 185306 (2013).
- F. Piazza and P. Strack, Phys. Rev. Lett. 112, 143003 (2014).
- J. Keeling, M. J. Bhaseen, and B.D. Simons, Phys. Rev. Lett. 112, 143002 (2014).
- E. Altman, L.M. Sieberer, L. Chen, S. Diehl, and J. Toner, Phys. Rev. X 5, 011017 (2015).
- C. Kollath, A. Sheikhan, S. Wolff, and F. Brennecke, Phys. Rev. Lett. 116, 060401 (2016).
- Z. Leghtas, S. Touzard, I.M. Pop, A. Kou, B. Vlastakis, A. Petrenko, K.M. Sliwa, A. Narla, S. Shankar, M. J. Hatridge, M. Reagor, L. Frunzio, R. J. Schoelkopf, M. Mirrahimi, and M.H. Devoret, Science 347, 853 (2015).
- E.G.D. Torre, E. Demler, T. Giamarchi, and E. Altman, Nat. Phys. 6, 806 (2010).
- L.M. Sieberer, S.D. Huber, E. Altman, and S. Diehl, Phys. Rev. Lett. 110, 195301 (2013).
- J. Raftery, D. Sadri, S. Schmidt, H.E. T¨ureci, and A.A. Houck, Phys. Rev. X 4, 031043 (2014).
- Y. Li, X. Chen, and M.P.A. Fisher, Phys. Rev. B 98, 205136 (2018).
- Y. Li, X. Chen, and M.P.A. Fisher, Phys. Rev. B 100, 134306 (2019).
- S. Roy, J.T. Chalker, I.V. Gornyi, and Y. Gefen, Phys. Rev. Research 2, 033347 (2020).
- S. Garratt and J.T. Chalker, Phys. Rev. Lett. 127, 026802 (2021).
- S. Diehl, A. Micheli, A. Kantian, B. Kraus, H.P. Buchler, and P. Zoller, Nat. Phys. 4, 878 (2008).
- B. Kraus, H.P. Buchler, S. Diehl, A. Kantian, A. Micheli, and P. Zoller, Phys. Rev. A 78, 042307 (2008).
- F. Verstraete, M.M. Wolf, and J. I. Cirac, Nat. Phys. 5, 633 (2009).
- H. Weimer, M. Muller, I. Lesanovsky, P. Zoller, and H.P. Buchler, Nat. Phys. 6, 382 (2010).
- S. Diehl, E. Rico, M.A. Baranov, and P. Zoller, Nat. Phys. 7, 971 (2011).
- C.-E. Bardyn, M.A. Baranov, E. Rico, A. ˙Imam˘oglu, P. Zoller, and S. Diehl, Phys. Rev. Lett. 109, 130402 (2012).
- C.-E. Bardyn, M.A. Baranov, C.V. Kraus, E. Rico, A. ˙Imam˘oglu, P. Zoller, and S. Diehl, New J. Phys. 15, 085001 (2013).
- J. Otterbach and M. Lemeshko, Phys. Rev. Lett. 113, 070401 (2014).
- R. Konig and F. Pastawski, Phys. Rev. B 90, 045101 (2014).
- N. Lang and H.P. Buchler, Phys. Rev. A 92, 012128 (2015).
- J.C. Budich, P. Zoller, and S. Diehl, Phys. Rev. A, 91 042117 (2015).
- F. Iemini, D. Rossini, R. Fazio, S. Diehl, and L. Mazza, Phys. Rev. B 93, 115113 (2016).
- L. Zhou, S. Choi, and M. D. Lukin, arXiv:1706.01995[quant-ph] (2017).
- Z. Gong, S. Higashikawa, and M. Ueda, Phys. Rev. Lett. 118, 200401 (2017).
- M. Goldstein, SciPost Physics 7, 67 (2019).
- G. Shavit and M. Goldstein, Phys. Rev. B 101, 125412 (2020).
- F. Tonielli, J.C. Budich, A. Altland, and S. Diehl, Phys. Rev. Lett. 124, 240404 (2020).
- T. Yoshida, K. Kudo, H. Katsura, and Y. Hatsugai, Phys. Rev. Research 2, 033428 (2020).
- M. Gau, R. Egger, A. Zazunov, and Y. Gefen, Phys. Rev. Lett. 125, 147701 (2020).
- M. Gau, R. Egger, A. Zazunov, and Y. Gefen, Phys. Rev. B 102, 134501 (2020).
- S. Bandyopadhyay and A. Dutta, Phys. Rev. B 102, 184302 (2020).
- R.A. Santos, F. Iemini, A. Kamenev, and Y. Gefen, Nat. Commun. 11, 5899 (2020).
- A. Altland, M. Fleischhauer, and S. Diehl, Phys. Rev. X 11, 021037 (2021).
- A. Beck and M. Goldstein, Phys. Rev. B 103, L241401 (2021).
- A. Nava, G. Campagnano, P. Sodano, and D. Giuliano, Phys. Rev. B 107, 035113 (2023).
- G. Shkolnik, A. Zabalo, R. Vasseur, D.A. Huse, J.H. Pixley, and S. Gazit, arXiv:2308.03844.
- G. Lindblad, Commun. Math. Phys. 48, 119 (1976).
- V. Gorini, A. Kossakowski, and E.C.G. Sudarshan, J. Math. Phys. 17, 821 (1976).
- M. Esposito and P. Gaspard, J. Stat. Phys. 121, 463 (2005).
- O.A. Castro-Alvaredo, B. Doyon, and T. Yoshimura, Phys. Rev. X 6, 041065 (2016).
- A. Dhar and H. Spohn, C. R. Phys. 20, 393 (2019).
- T. Jin, J. S. Ferreira, M. Filippone, and T. Giamarchi, Phys. Rev. Research 4, 013109 (2022).
- P.A. Nosov, D. S. Shapiro, M. Goldstein, and I. S. Burmistrov, Phys. Rev. B 107, 174312 (2023).
- A. Kamenev and A. Levchenko, Adv. Phys. 58, 197 (2009).
- B. Buˇca and T. Prosen, New J. Phys. 14, 073007 (2012).
- V.V. Albert and L. Jiang, Phys. Rev. A 89, 022118 (2014).
- P.A. Lee and T.V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985).
- Q. Yang, Y. Zuo, and D.E. Liu, arXiv:2207.03376.
- M. Fava, L. Piroli, T. Swann, D. Bernard, and A. Nahum, arXiv:2302.12820.
- I. Poboiko, P. P¨opperl, I.V. Gornyi, and A.D. Mirlin, arXiv:2304.03138.
- F. S. Lozano-Negro, E.A. Navarro, N.C. Ch'avez, F. Mattiotti, F. Borgonovi, H.M. Pastawski, and G. L. Celardo, arXiv:2307.05656.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 
