Tilt and Anisotropy of the Dirac Spectrum Caused by the Overlapping of Bloch Functions
- Autores: Alisultanov Z.Z1,2, Demirov N.A3
- 
							Afiliações: 
							- Abrikosov International Center for Theoretical Physics, Moscow Institute of Physics and Technology (National Research University), 141701, Dolgoprudnyi, Moscow region, Russia
- Institute of Physics, Dagestan Scientific Center, Russian Academy of Sciences, 367015, Makhachkala, Russia
- Joint Institute for High Temperatures, Russian Academy of Sciences, 125412, Moscow, Russia
 
- Edição: Volume 117, Nº 9-10 (5) (2023)
- Páginas: 777-782
- Seção: Articles
- URL: https://cardiosomatics.ru/0370-274X/article/view/662561
- DOI: https://doi.org/10.31857/S1234567823100105
- EDN: https://elibrary.ru/CNSJBG
- ID: 662561
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
It has been shown that the overlapping of bands belonging to equivalent representation of the symmetry group is possible in systems with Dirac points appearing at the crossing of these bands. This overlapping results in the tilt and additional anisotropy of the Dirac spectrum, as well as in the renormalization of the velocity. At the same time, overlapping does not violate the general conditions of existence of the stable band crossing point. The effective Dirac Hamiltonian in the presence of band overlapping is pseudo-Hermitian and corresponds to the effective action of a massless spinor field in the curved spacetime.
Sobre autores
Z. Alisultanov
Abrikosov International Center for Theoretical Physics, Moscow Institute of Physics and Technology (National Research University), 141701, Dolgoprudnyi, Moscow region, Russia; Institute of Physics, Dagestan Scientific Center, Russian Academy of Sciences, 367015, Makhachkala, Russia
														Email: zaur0102@gmail.com
				                					                																			                												                														
N. Demirov
Joint Institute for High Temperatures, Russian Academy of Sciences, 125412, Moscow, Russia
							Autor responsável pela correspondência
							Email: zaur0102@gmail.com
				                					                																			                												                														
Bibliografia
- N. P. Armitage, E. J. Mele, and A. Vishwanath, Rev. Mod. Phys. 90, 015001 (2018).
- P. A. Dirac, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 117, 610 (1928).
- H. Weyl, Proc. Natl. Acad. Sci. USA 15(4), 323 (1929).
- S. Murakami, New J. Phys. 9(9), 356 (2007).
- S. Murakami, S. Iso, Y. Avishai, M. Onoda, and N. Nagaosa, Phys. Rev. B 76, 205304 (2007).
- M. Katsnelson, Graphene: Carbon in Two Dimensions, Cambridge University Press, Cambridge (2012).
- E. Kogan and V. U. Nazarov, Phys. Rev. B 85, 115418 (2012).
- B. Bradlyn, J. Cano, Z. Wang, M. Vergniory, C. Felser, R. Cava, and B. A. Bernevig, Science 353, aaf5037 (2016).
- A. A. Soluyanov, D. Gresch, Z. Wang, Q. Wu, M. Troyer, X. Dai, and B. A. Bernevig, Nature 527(7579), 495 (2015).
- B. J. Wieder, Y. Kim, A. M. Rappe, and C. L. Kane, Phys. Rev. Lett. 116, 186402 (2016).
- З. З. Алисултанов, ЖЭТФ 152(5), 986 (2017).
- З. З. Алисултанов, Письма в ЖЭТФ 107(4), 260 (2018).
- C. Herring, Phys. Rev. 52, 365 (1937).
- E. Antoncık and P. T. Landsberg, Proc. Phys. Soc. 82, 337342 (1963).
- V. Halpern, J. Phys. Chem. Solids 24, 14951502 (1963).
- N. Bernstein, M. J. Mehl, and D. A. Papaconstantopoulos, Phys. Rev. B 66, 075212 (2002).
- W. A. Harrison and S. Ciraci, Phys. Rev. B 10, 1516 (1974).
- J. Tejeda and N. J. Shevchik, Phys. Rev. B 13, 2548 (1976).
- T. B. Boykin, P. Sarangapani, and G. Klimeck, J. Appl. Phys. 125, 144302 (2019).
- C. Herring, Phys. Rev. 52, 361 (1937).
- C. Kittel, Quantum Theory of Solids, Wiley, N.Y. (1963).
- A. Mostafazadeh, J. Math. Phys. 43, 205214 (2002).
- A. Mostafazadeh, J. Math. Phys. 43, 28142816 (2002).
- A. Mostafazadeh, J. Math. Phys. 43, 39443951 (2002).
- Z. Z. Alisultanov and E. G. Idrisov, Phys. Rev. B 107, 085135 (2023).
- J. Nissinen and G. E. Volovik, JETP Lett. 105, 442 (2017).
- J. Nissinen and G. E. Volovik, JETP 127, 948957 (2018).
- G. E. Volovik, Black hole and Hawking radiation by type-II Weyl fermions, JETP Lett. 104, 645 (2016), arXiv:1610.00521
- Y. Kedem, E. J. Bergholtz, and F. Wilczek, Phys. Rev. Research 2, 043285 (2020).
- I. Proskurin, M. Ogata, and Y. Suzumura, Phys. Rev. B 91, 195413 (2015).
- M. Mili'cevi'c, G. Montambaux, T. Ozawa, O. Jamadi, B. Real, I. Sagnes, A. Lemaˆıtre, L. Le Gratiet, A. Harouri, J. Bloch, and A. Amo Phys. Rev. X 9, 031010 (2019).
- A. Wild, E. Mariani, and M. E. Portnoi, Phys. Rev. B 105, 205306 (2022).
- Y. Yekta, H. Hadipour, and S. A. Jafari, Commun. Phys. 6, 46 (2023).
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 
