Spin Diffusion and Oscillations of the Magnetization at High-Frequency Spin Injection
- Autores: Bebenin N.G.1
- 
							Afiliações: 
							- Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
 
- Edição: Volume 118, Nº 5-6 (9) (2023)
- Páginas: 338-340
- Seção: Articles
- URL: https://cardiosomatics.ru/0370-274X/article/view/663065
- DOI: https://doi.org/10.31857/S1234567823170056
- EDN: https://elibrary.ru/JZNUNV
- ID: 663065
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The frequency dependence of the nonequilibrium magnetization arising in an electron gas due to spin injection from a half-metallic ferromagnet into a nonmagnetic material is theoretically analyzed. It is shown that high-frequency spin injection gives rise to nonequilibrium magnetization waves, which decay at a length much smaller than the spin diffusion length. This reduces the efficiency of spin injection.
Sobre autores
N. Bebenin
Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: bebenin@imp.uran.ru
				                					                																			                												                								620108, Yekaterinburg, Russia						
Bibliografia
- Spin Physics in Semiconductor, ed. by M. I. Dyakonov, secod edition, Springer International Publishing AG, Cham, Switzerland (2017).
- S. Maekawa, S. O. Valenzuela, E. Saitoh, and T. Kimura, Spin Current, Oxford University Press, N.Y. (2017).
- A. Hirohata, K. Yamada, Y. Nakatani, I.-L. Prejbeanu, B. Di'eny, P. Pirro, and B. Hillebrands, J. Magn. Magn. Mater. 509, 166711 (2020).
- A. I. Nikitchenko and N. A. Pertsev, Phys. Rev. App. 14, 034022 (2020).
- E. A. Karashtin and D. A. Tatarskiy, J. Phys.: Condens. Matter. 32, 095303 (2020).
- В. Ю. Ирхин, М. И. Кацнельсон, УФН 164, 705 (1994).
- В. В. Марченков, В. Ю. Ирхин, ФММ 122, 1221 (2021).
- N. G. Bebenin, Solid State Electronics 186, 108174 (2021).
- А. Н. Тихонов, А. А. Самарский, Уравнения математической физики, 5-е изд., стереотипное, Главная редакция физико-математической литературы издательства "Наука", М. (1977), 736 с.
- N. A. Viglin, V. V. Ustinov, S. O. Demokritov, A. O. Shorikov, N. G. Bebenin, V. M. Tsvelikhovskaya, T. N. Pavlov, and E. I. Patrakov, Phys. Rev. B 96, 235303 (2017).
- Н. А. Виглин, Ю. В. Никулин, В. М. Цвелиховская, Т. Н. Павлов, В. В. Проглядо, ЖЭТФ 134, 866 (2022).
- O. M. van't Erve, A. L. Friedman, E. Cobas, C. H. Li, J. T. Robinson, and B. T. Jonker, Nat. Nanotechnol. 7, 737 (2012).
- E. Shikoh, K. Ando, K. Kubo, E. Saitoh, T. Shinjo, and M. Shiraishi, Phys. Rev. Lett. 110, 127201 (2013).
- J.-H. Ku, J. Chang, H. Kim, and J. Eom. Phys. Appl. Phys. Lett. 88, 172510 (2006).
- H. Idzuchi, Y. Fukuma, and Y. Otani, Physica E 68, 239 (2015).
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 
