Topological Memory with Multiply-Connected Planar Magnetic Nanoelements
- Autores: Metlov K.L.1,2
- 
							Afiliações: 
							- Donetsk Institute for Physics and Engineering
- Institute for Numerical Mathematics, Russian Academy of Sciences
 
- Edição: Volume 118, Nº 1-2 (7) (2023)
- Páginas: 95-101
- Seção: Articles
- URL: https://cardiosomatics.ru/0370-274X/article/view/663109
- DOI: https://doi.org/10.31857/S1234567823140057
- EDN: https://elibrary.ru/GYZIFH
- ID: 663109
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
A coding scheme is introduced to store a set of linked bit strings in planar magnetic nanoelements with holes. Analytical expressions for the corresponding magnetization distributions are developed up to a homotopy and the specific examples are given for doubly- and triply-connected cases. The energy barriers, protecting the information-bearing states, are discussed. Compared to a set of disparate simply-connected nanoelements of the same total connectivity, the nanoelements with holes can hold much more information due to the possibility of linking the individual bits.
Sobre autores
K. Metlov
Donetsk Institute for Physics and Engineering;Institute for Numerical Mathematics, Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: metlov@donfti.ru
				                					                																			                												                								Donetsk, 283048 Russia;Moscow, 119991 Russia						
Bibliografia
- S. S. P. Parkin, M. Hayashi, and L. Thomas, Science 320, 190 (2008).
- A. Fert, V. Cros, and J. Sampaio, Nat. Nanotechnol 8, 152 (2013).
- R. Tomasello, E. Martinez, R. Zivieri, L. Torres, M. Carpentieri, and G. Finocchio, Sci. Rep. 4, 6784 (2014).
- S. Qiu, J. Liu, Y. Chen, X. Qi, and L. Fang, J. Magn. Magn. Mater. 554, 169144 (2022).
- S. Jain, V. Novosad, F. Fradin, J. Pearson, V. Tiberkevich, A. Slavin, and S. Bader, Nat.Commun 3, 1330 (2012).
- A. A. Belavin and A. M. Polyakov, JETP Lett. 22, 245 (1975).
- A. Wachowiak, J. Wiebe, M. Bode, O. Pietzsch, M. Morgenstern, and R. Wiesendanger, Science 298, 577 (2002).
- V. L. Mironov, O. L. Ermolaeva, S. A. Gusev, A. Y. Klimov, V. V. Rogov, B. A. Gribkov, O. G. Udalov, A. A. Fraerman, R. Marsh, C. Checkley, R. Shaikhaidarov, and V. T. Petrashov, Phys. Rev. B 81, 094436 (2010).
- K. L. Metlov, Phys. Rev. Lett. 105, 107201 (2010).
- D. J. Gross, Nucl. Phys. B 132, 439 (1978).
- A. B. Bogatyrev, Theor. Math. Phys. 193, 1547 (2017).
- A. B. Bogatyrev and K. L. Metlov, Low Temp. Phys. 41, 984 (2015).
- A. B. Bogatyr¨ev and K. L. Metlov, Phys. Rev. B 95, 024403 (2017).
- N. Akhiezer, Elements of the Theory of Elliptic Functions, Translations of mathematical monographs, American Mathematical Society (1990).
- D. G. Crowdy and J. S. Marshall, Comput. Meth. Funct. Theor. 7, 293 (2007).
- M. Potkina, I. Lobanov, H. J'onsson, and V. Uzdin, J. Magn. Magn. Mater. 549, 168974 (2022).
- E. E. Huber, Jr., D. O. Smith, and J. B. Goodenough, J. Appl. Phys. 29, 294 (1958).
- A. Bisig, M. St¨ark, M.-A. Mawass, C. Mouta s, J. Rhensius, J. Heidler, F. Bu¨ttner, M. Noske, M. Weigand, S. Eisebitt, T. Tyliszczak, B. Van Waeyenberge, H. Stoll, G. Schu¨tz, and M. Kl¨aui, Nat.Commun. 4, 2328 (2013).
- K. L. Metlov and Y. P. Lee, Appl. Phys. Lett. 92, 112506 (2008).
- M. J. Mart'ınez-P'erez, B. Mu¨ller, J. Lin, L. A. Rodriguez, E. Snoeck, R. Kleiner, J. Ses'e, and D. Koelle, Nanoscale 12, 2587 (2020).
- E.-M. Hempe, M. Kl¨aui, T. Kasama, D. Backes, F. Junginger, S. Krzyk, L. J. Heyderman, R. Dunin-Borkowski, and U.Ru¨diger, Phys. Stat. Sol. A 204, 3922 (2007).
- V. Est'evez and L. Laurson, Phys. Rev. B 91, 054407 (2015).
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 
