Hopf Bifurcation in a Predator–Prey System with Infection
- Autores: Krishchenko A.P.1,2, Podderegin O.A.1
- 
							Afiliações: 
							- Bauman Moscow State Technical University, Moscow, 105005, Russia
- Federal Research Center “Computer Science and Control,” Russian Academy of Sciences, Moscow, 119333, Russia
 
- Edição: Volume 59, Nº 11 (2023)
- Páginas: 1566-1570
- Seção: Articles
- URL: https://cardiosomatics.ru/0374-0641/article/view/649457
- DOI: https://doi.org/10.31857/S0374064123110122
- EDN: https://elibrary.ru/PEXCDU
- ID: 649457
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
We study a model of a predator–prey system with possible infection of prey in the form of a three-dimensional system of ordinary differential equations. Using the localization method of compact invariant sets, the existence of an attractor is proved and a compact positively invariant set is found that estimates its position. The conditions for the extinction of populations and the existence of equilibria are found. A numerical method for finding a Hopf bifurcation of the inner equilibrium is proposed and an example of an arising stable limit cycle is given.
Sobre autores
A. Krishchenko
Bauman Moscow State Technical University, Moscow, 105005, Russia; Federal Research Center “Computer Science and Control,” Russian Academy of Sciences, Moscow, 119333, Russia
														Email: apkri@bmstu.ru
				                					                																			                												                								Москва Россия						
O. Podderegin
Bauman Moscow State Technical University, Moscow, 105005, Russia
							Autor responsável pela correspondência
							Email: podderegino@gmail.com
				                					                																			                												                								Москва Россия						
Bibliografia
- Bate A.M., Hilkerr F.M. Complex dynamics in an eco-epidemiological model // Bull. Math. Biol. 2013. V. 75. P. 2059-2078.
- Крищенко А.П. Локализация инвариантных компактов динамических систем // Дифференц. уравнения. 2005. Т. 41. № 12. С. 1597-1604.
- Арнольд В.И. Обыкновенные дифференциальные уравнения. М., 2012.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 
