Нанокомпозит графен-фосфореновых структур с фосфидом кобальта – эффективный электрокатализатор выделения водорода в кислой среде
- Авторы: Кочергин В.К.1, Манжос Р.А.1, Кабачков Е.Н.1,2, Ходос И.И.3, Кривенко А.Г.1
- 
							Учреждения: 
							- Федеральный исследовательский центр проблем химической физики и медицинской химии РАН
- Институт физики твердого тела имени Ю.А. Осипьяна РАН
- Институт проблем технологии микроэлектроники и особо чистых материалов РАН
 
- Выпуск: Том 60, № 6 (2024)
- Страницы: 399-407
- Раздел: Статьи
- URL: https://cardiosomatics.ru/0424-8570/article/view/671316
- DOI: https://doi.org/10.31857/S0424857024060025
- EDN: https://elibrary.ru/PVETUY
- ID: 671316
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
Одними из наиболее перспективных электрокатализаторов реакции выделения водорода с точки зрения соотношения активности, стоимости и долговечности являются материалы, содержащие наночастицы фосфида кобальта. В работе представлен простой и эффективный подход для получения нанокомпозита графен-фосфореновых структур, декорированных наночастицами CoP с размерами 2–5 нм. Нанокомпозит был получен путем электрохимического расщепления черного фосфора с последующим сольвотермальным синтезом, осуществленным в присутствии допированных атомами азота малослойных графеновых структур в растворе, содержащем ионы Co2+. Установлено, что полученный электрокатализатор демонстрирует высокую активность и стабильность в реакции выделения водорода в кислой среде. Для достижения плотности тока 10 мА см–2 требуется перенапряжение ~220 мВ, при этом наклон Тафеля составляет ~63 мВ дек–1. Сделано предположение, что такой результат обусловлен как синергетическим эффектом взаимодействия между графеновыми и фосфореновыми структурами, так и электрокаталитической активностью наноразмерных частиц CoP, присутствующих на краевых участках фосфореновых структур.
Полный текст
 
												
	                        Об авторах
В. К. Кочергин
Федеральный исследовательский центр проблем химической физики и медицинской химии РАН
							Автор, ответственный за переписку.
							Email: kochergin@icp.ac.ru
				                					                																			                												                	Россия, 							Черноголовка						
Р. А. Манжос
Федеральный исследовательский центр проблем химической физики и медицинской химии РАН
														Email: kochergin@icp.ac.ru
				                					                																			                												                	Россия, 							Черноголовка						
Е. Н. Кабачков
Федеральный исследовательский центр проблем химической физики и медицинской химии РАН; Институт физики твердого тела имени Ю.А. Осипьяна РАН
														Email: kochergin@icp.ac.ru
				                					                																			                												                	Россия, 							Черноголовка; Черноголовка						
И. И. Ходос
Институт проблем технологии микроэлектроники и особо чистых материалов РАН
														Email: kochergin@icp.ac.ru
				                					                																			                												                	Россия, 							Черноголовка						
А. Г. Кривенко
Федеральный исследовательский центр проблем химической физики и медицинской химии РАН
														Email: kochergin@icp.ac.ru
				                					                																			                												                	Россия, 							Черноголовка						
Список литературы
- Huangfu, Z., Hu, H., Xie, N., Zhu, Y.-Q., Chen, H., and Wang, Y., The Heterogeneous Influence of Economic Growth on Environmental Pollution: Evidence from Municipal Data of China, Pet. Sci., 2020, vol. 17, p. 1180. https://doi.org/10.1007/s12182-020-00459-5
- Tian, L., Li, Z., Wang, P., Zhai, X., Wang, X., and Li, T., Carbon Quantum Dots for Advanced Electrocatalysis, J. Energy Chem., 2021, vol. 55, p. 279. https://doi.org/10.1016/j.jechem.2020.06.057
- Do, M.N., Berezina, N.M., Bazanov, M.I., Gyseinov, S.S., Berezin, M.M., and Koifman, O.I., Electrochemical Behavior of a Number of Bispyridyl-Substituted Porphyrins and Their Electrocatalytic Activity in Molecular Oxygen Reduction Reaction, J. Porphyrins Phthalocyanines, 2016, vol. 20, p. 615. https://doi.org/10.1142/S1088424616500437
- Sazali, N., Emerging Technologies by Hydrogen: A Review, Int. J. Hydrogen Energy, 2020, vol. 45, p. 18753. https://doi.org/10.1016/j.ijhydene.2020.05.021
- Zou, X. and Zhang, Y., Noble Metal-Free Hydrogen Evolution Catalysts for Water Splitting, Chem. Soc. Rev., 2015, vol. 44, p. 5148. https://doi.org/10.1039/C4CS00448E
- Popczun, E.J., McKone, J.R., Read, C.G., Biacchi, A.J., Wiltrout, A.M., Lewis, N.S., and Schaak, R.E., Nanostructured Nickel Phosphide as an Electrocatalyst for the Hydrogen Evolution Reaction, J. Am. Chem. Soc., 2013, vol. 135, p. 9267. https://doi.org/10.1021/ja403440e
- Li, Y., Sun, Y., Qin, Y., Zhang, W., Wang, L., Luo, M., Yang, H., and Guo, S., Recent Advances on Water-Splitting Electrocatalysis Mediated by Noble-Metal-Based Nanostructured Materials, Adv. Energy Mater., 2020, vol. 10, p. 1903120. https://doi.org/10.1002/aenm.201903120
- Ruqia, B. and Choi, S., Catalytic Surface Specificity on Pt and Pt–Ni(OH)2 Electrodes for the Hydrogen Evolution Reaction in Alkaline Electrolytes and Their Nanoscaled Electrocatalysts, ChemSusChem, 2018, vol. 11, p. 2643. https://doi.org/10.1002/cssc.201800781
- Liao, F., Jiang, B., Shen, W., Chen, Y., Li, Y., Shen, Y., Yin, K., and Shao, M., Ir-Au Bimetallic Nanoparticle Modified Silicon Nanowires with Ultralow Content of Ir for Hydrogen Evolution Reaction, ChemCatChem, 2019, vol. 11, p. 2126. https://doi.org/10.1002/cctc.201900241
- Ma, F., Xu, C., Lyu, F., Song, B., Sun, S., Li, Y.Y., Lu, J., and Zhen, L., Construction of FeP Hollow Nanoparticles Densely Encapsulated in Carbon Nanosheet Frameworks for Efficient and Durable Electrocatalytic Hydrogen Production, Adv. Sci., 2019, vol. 6, p. 1801490. https://doi.org/10.1002/advs.201801490
- Kakati, N., Maiti, J., Lee, S.H., Jee, S.H., Viswanathan, B., and Yoon, Y.S., Anode Catalysts for Direct Methanol Fuel Cells in Acidic Media: Do We Have Any Alternative for Pt or Pt–Ru? Chem. Rev., 2014, vol. 114, p. 12397. https://doi.org/10.1021/cr400389f
- Antolini, E., Palladium in Fuel Cell Catalysis, Energy Environ. Sci., 2009, vol. 2, p. 915. https://doi.org/10.1039/b820837a
- Faber, M.S. and Jin, S., Earth-Abundant Inorganic Electrocatalysts and Their Nanostructures for Energy Conversion Applications, Energy Environ. Sci., 2014, vol. 7, p. 3519. https://doi.org/10.1039/C4EE01760A
- Zeng, M. and Li, Y., Recent Advances in Heterogeneous Electrocatalysts for the Hydrogen Evolution Reaction, J. Mater. Chem. A, 2015, vol. 3, p. 14942. https://doi.org/10.1039/C5TA02974K
- Liu, Q., Tian, J., Cui, W., Jiang, P., Cheng, N., Asiri, A.M., and Sun, X., Carbon Nanotubes Decorated with CoP Nanocrystals: A Highly Active Non-Noble-Metal Nanohybrid Electrocatalyst for Hydrogen Evolution, Angew. Chem. Int. Ed., 2014, vol. 53, p. 6710. https://doi.org/10.1002/anie.201404161
- Yu, S.H. and Chua, D.H.C., Toward High-Performance and Low-Cost Hydrogen Evolution Reaction Electrocatalysts: Nanostructuring Cobalt Phosphide (CoP) Particles on Carbon Fiber Paper, ACS Appl. Mater. Interfaces, 2018, vol. 10, p. 14777. https://doi.org/10.1021/acsami.8b02755
- Yan, L., Cao, L., Dai, P., Gu, X., Liu, D., Li, L., Wang, Y., and Zhao, X., Metal-Organic Frameworks Derived Nanotube of Nickel-Cobalt Bimetal Phosphides as Highly Efficient Electrocatalysts for Overall Water Splitting, Adv. Funct. Mater., 2017, vol. 27, p. 1703455. https://doi.org/10.1002/adfm.201703455
- Yu, D., Ilango, P.R., Han, S., Ye, M., Hu, Y., Li, L., and Peng, S., Metal-Organic Framework Derived Co@NC/CNT Hybrid as a Multifunctional Electrocatalyst for Hydrogen and Oxygen Evolution Reaction and Oxygen Reduction Reaction, Int. J. Hydrogen Energy, 2019, vol. 44, p. 32054. https://doi.org/10.1016/j.ijhydene.2019.10.149
- Lu, M., Li, L., Chen, D., Li, J., Klyui, N.I., and Han, W., MOF-Derived Nitrogen-Doped CoO@CoP Arrays as Bifunctional Electrocatalysts for Efficient Overall Water Splitting, Electrochim. Acta, 2020, vol. 330, p. 135210. https://doi.org/10.1016/j.electacta.2019.135210
- Sun, T., Dong, J., Huang, Y., Ran, W., Chen, J., and Xu, L., Highly Active and Stable Electrocatalyst of Ni2P Nanoparticles Supported on 3D Ordered Macro-/Mesoporous Co–N-Doped Carbon for Acidic Hydrogen Evolution Reaction, J. Mater. Chem. A, 2018, vol. 6, p. 12751. https://doi.org/10.1039/C8TA03672A
- Yang, S., Zhang, K., Ricciardulli, A.G., Zhang, P., Liao, Z., Lohe, M.R., Zschech, E., Blom, P.W.M., Pisula, W., Müllen, K., and Feng, X., A Rational Delamination Strategy towards Defect-Free, High- Mobility, Few-Layered Black Phosphorus Flakes, Angew. Chem., 2018, vol. 130, p. 4767. https://doi.org/10.1002/ange.201801265
- Cheng, J., Gao, L., Li, T., Mei, S., Wang, C., Wen, B., Huang, W., Li, C., Zheng, G., Wang, H., and Zhang, H., Two-dimensional black phosphorus nanomaterials: emerging advances in electrochemical energy storage science, Nano-Micro Lett., 2020, vol. 12, p. 1. https://doi.org/10.1007/s40820-020-00510-5
- Baboukani, A.R., Khakpour, I., Drozd, V., and Wang, C., Liquid-Based Exfoliation of Black Phosphorus into Phosphorene and Its Application for Energy Storage Devices, Small Struct., 2021, vol. 2, p. 2000148. https://doi.org/10.1002/sstr.202000148
- Liu, H., Hu, K., Yan, D., Chen, R., Zou, Y., Liu, H., and Wang, S., Recent advances on black phosphorus for energy storage, catalysis, and sensor applications, Adv. Mater., 2018, vol. 30, p. 1800295. https://doi.org/10.1002/adma.201800295
- Mei, J., Liao, T., and Sun, Z., Opportunities and Challenges of Black Phosphorus for Electrocatalysis and Rechargeable Batteries, Adv. Sustain. Syst., 2022, vol. 6, p. 2200301. https://doi.org/10.1002/adsu.202200301
- Gao, W., Zhou, Y., Wu, X., Shen, Q., Ye, J., and Zou, Z., State-of-the-Art Progress in Diverse Black Phosphorus-Based Structures: Basic Properties, Synthesis, Stability, Photo- and Electrocatalysis-Driven Energy Conversion, Adv. Funct. Mater., 2021, vol. 31, p. 2005197. https://doi.org/10.1002/adfm.202005197
- Konev, D.V., Kotkin, A.S., Kochergin, V.K., Manzhos, R.A., and Krivenko, A. G., Effect of graphene surface functionalization on the oxygen reduction reaction in alkaline media, Mendeleev Commun., 2020, vol. 30, p. 472. https://doi.org/10.1016/j.mencom.2020.07.021
- Yuan, Z., Li, J., Yang, M., Fang, Z., Jian, J., Yu, D., Chen, X., and Dai, L., Ultrathin Black Phosphorus-on-Nitrogen Doped Graphene for Efficient Overall Water Splitting: Dual Modulation Roles of Directional Interfacial Charge Transfer, J. Am. Chem. Soc., 2019, vol. 141, p. 4972. https://doi.org/10.1021/jacs.9b00154
- Kochergin, V.K., Komarova, N.S., Kotkin, A.S., Manzhos, R.A., Vasiliev, V.P., and Krivenko, A.G., Plasma Electrochemical Synthesis of Graphene-Phosphorene Composite and Its Catalytic Activity towards Hydrogen Evolution Reaction, C, 2022, vol. 8, p. 79. https://doi.org/10.3390/c8040079
- Krivenko, A.G., Manzhos, R.A., Kotkin, A.S., Kochergin, V.K., Piven, N.P., and Manzhos, A.P., Production of Few-Layer Graphene Structures in Different Modes of Electrochemical Exfoliation of Graphite by Voltage Pulses, Instrum. Sci. Technol., 2019, vol. 47, p. 535. https://doi.org/10.1080/10739149.2019.1607750
- Krivenko, A.G., Manzhos, R.A., Kochergin, V.K., Malkov, G.V., Tarasov, A.E., and Piven, N.P., Plasma electrochemical synthesis of few-layer graphene structures for modification of epoxy binder, High Energ. Chem., 2019, vol. 53, p. 254. https://doi.org/ 10.1134/S0018143919030111
- Kochergin, V.K., Manzhos, R.A., Khodos, I.I., and Krivenko, A.G., One-Step Synthesis of Nitrogen-Doped Few-Layer Graphene Structures Decorated with Mn1.5Co1.5O4 Nanoparticles for Highly Efficient Electrocatalysis of Oxygen Reduction Reaction, Mendeleev Commun., 2022, vol. 32, p. 492. https://doi.org/10.1016/j.mencom.2022.07.020
- Wang, J., Liu, D., Huang, H., Yang, N., Yu, B., Wen, M., Wang, X., Chu, P.K., and Yu, X.-F., In-Plane Black Phosphorus/Dicobalt Phosphide Heterostructure for Efficient Electrocatalysis, Angew. Chem., 2018, vol. 130, p. 2630. https://doi.org/10.1002/ange.201710859
- Ha, D.-H., Moreau, L.M., Bealing, C.R., Zhang, H., Hennig, R.G., and Robinson, R.D., The Structural Evolution and Diffusion during the Chemical Transformation from Cobalt to Cobalt Phosphide Nanoparticles, J. Mater. Chem., 2011, vol. 21, p. 11498. https://doi.org/10.1039/c1jm10337g
- Liu, T., Yan, X., Xi, P., Chen, J., Qin, D., Shan, D., Devaramani, S., and Lu, X., Nickel–Cobalt Phosphide Nanowires Supported on Ni Foam as a Highly Efficient Catalyst for Electrochemical Hydrogen Evolution Reaction, Int. J. Hydrogen Energy, 2017, vol. 42, p. 14124. https://doi.org/10.1016/j.ijhydene.2017.04.116
- Kotkin, A.S., Kochergin, V.K., Kabachkov, E.N., Shulga, Y.M., Lobach, A.S., Manzhos, R.A., and Krivenko, A.G., One-Step Plasma Electrochemical Synthesis and Oxygen Electrocatalysis of Nanocomposite of Few-Layer Graphene Structures with Cobalt Oxides, Mater. Today Energy, 2020, vol. 17, p. 100459. https://doi.org/10.1016/j.mtener.2020.100459
- Pan, Y., Liu, Y., Zhao, J., Yang, K., Liang, J., Liu, D., Hu, W., Liu, D., Liu, Y., and Liu, C., Monodispersed Nickel Phosphide Nanocrystals with Different Phases: Synthesis, Characterization and Electrocatalytic Properties for Hydrogen Evolution, J. Mater. Chem. A, 2015, vol. 3, p. 1656. https://doi.org/10.1039/C4TA04867A
- Huang, Z., Chen, Z., Chen, Z., Lv, C., Meng, H., and Zhang, C., Ni12P5 Nanoparticles as an Efficient Catalyst for Hydrogen Generation via Electrolysis and Photoelectrolysis, ACS Nano, 2014, vol. 8, p. 8121. https://doi.org/10.1021/nn5022204
- Grosvenor, A.P., Wik, S.D., Cavell, R.G., and Mar, A., Examination of the Bonding in Binary Transition-Metal Monophosphides MP (M = Cr, Mn, Fe, Co) by X-Ray Photoelectron Spectroscopy, Inorg. Chem., 2005, vol. 44, p. 8988. https://doi.org/10.1021/ic051004d
- Li, X., Ma, J., Luo, J., Cheng, S., Gong, H., Liu, J., Xu, C., Zhao, Z., Sun, Y., Song, W., Li, K., and Li, Z., Porous N, P Co-Doped Carbon-Coated Ultrafine Co2P Nanoparticles Derived from DNA: An Electrocatalyst for Highly Efficient Hydrogen Evolution Reaction, Electrochim. Acta, 2021, vol. 393, p. 139051. https://doi.org/10.1016/j.electacta.2021.139051
- Briggs, D. and Seah, M.P., Practical Surface Analysis: By Auger and X-Ray Photoelectron Spectroscopy, 2nd ed., JohnWiley & Sons, Ltd.: Chichester, UK, 1990. 674 p.
- Lv, X., Ren, J., Wang, Y., Liu, Y., and Yuan, Z.Y., Well-defined phase-controlled cobalt phosphide nanoparticles encapsulated in nitrogen-doped graphitized carbon shell with enhanced electrocatalytic activity for hydrogen evolution reaction at all-pH, ACS Sustain. Chem. Eng., 2019, vol. 7, p. 8993. https://doi.org/10.1021/acssuschemeng.9b01263
- Zhang, X.Y., Guo, B.Y., Chen, Q.W., Dong, B., Zhang, J.Q., Qin, J.F., Xie, J.Y., Yang, M., Wang, L., Chai, Y.M., and Liu, C.G., Ultrafine and highly-dispersed bimetal Ni2P/Co2P encapsulated by hollow N-doped carbon nanospheres for efficient hydrogen evolution, Int. J. Hydrogen Energy, 2019, vol. 44, p. 14908. https://doi.org/10.1016/j.ijhydene.2019.04.108
- Chen, T., Ye, B., Dai, H., Qin, S., Zhang, Y., and Yang, Q., Ni-doped CoP/Co2P nanospheres as highly efficient and stable hydrogen evolution catalysts in acidic and alkaline mediums, J. Solid State Chem., 2021, vol. 301, p. 122299. https://doi.org/10.1016/j.jssc.2021.122299
- Yang, S., Chen, L., Wei, W., Lv, X., and Xie, J., CoP nanoparticles encapsulated in three-dimensional N-doped porous carbon for efficient hydrogen evolution reaction in a broad pH range, Appl. Surf. Sci., 2019, vol. 476, p. 749. https://doi.org/10.1016/j.apsusc.2019.01.131
- Liao, L., Zhu, J., Bian, X., Zhu, L., Scanlon, M.D., Girault, H. H., and Liu, B., MoS2 formed on mesoporous graphene as a highly active catalyst for hydrogen evolution, Adv. Funct. Mater., 2013, vol. 23, p. 5326. https://doi.org/10.1002/adfm.201300318
Дополнительные файлы
 
				
			 
						 
						 
						 
					 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 






