Подвижность кислорода допированных самарием никелатов неодима, спеченных электронными пучками
- Авторы: Садыков В.А.1, Садовская Е.М.1, Беспалко Ю.Н.1, Смаль Е.А.1, Булавченко О.А.1, Еремеев Н.Ф.1, Просвирин И.П.1, Михайленко М.А.2, Коробейников М.В.3
- 
							Учреждения: 
							- Институт катализа им. Г.К. Борескова СО РАН
- Институт химии твердого тела и механохимии СО РАН
- Институт ядерной физики им. Г.И. Будкера СО РАН
 
- Выпуск: Том 61, № 2 (2025)
- Страницы: 140-152
- Раздел: Специальный выпуск на основе докладов на 17-м Международном Совещании “Фундаментальные и прикладные проблемы ионики твердого тела” (Черноголовка, 16–23 июня 2024 г.)
- URL: https://cardiosomatics.ru/0424-8570/article/view/684447
- DOI: https://doi.org/10.31857/S0424857025020021
- EDN: https://elibrary.ru/DKLPCX
- ID: 684447
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
Фазы Раддлесдена–Поппера являются известными материалами электрохимических устройств, таких как твердооксидные топливные элементы/электролизеры, кислородпроводящие мембраны. Допирование A-положения лантаноидами меньшего радиуса может помочь увеличить кислородную подвижность, однако данный вопрос до сих пор мало исследован. Настоящая работа посвящена изучению фазового состава и транспортных свойств допированных Sm никелатов Nd, спеченных радиационно-термическим методом с использованием электронных пучков. Nd2–xSmxNiO4+δ (x = 0.2, 0.4) были синтезированы модифицированным методом Пекини и спечены электронными пучками при 1150–1250°C. Полученные материалы охарактеризованы с помощью рентгенофазового анализа, рентгеновской фотоэлектронной спектроскопии и термопрограммированного изотопного обмена с C18O2 в проточном реакторе. Кислород поверхности материалов представлен в виде двух форм с различной энергией связи. По данным термопрограммированного изотопного обмена кислорода, для образцов характерна неоднородность подвижности кислорода, причем при x = 0.4 образуется канал медленной диффузии. Данные особенности диффузии кислорода, по-видимому, связаны с влиянием допирования и радиационно-термического спекания на структуру с образованием примесных фаз, нарушением кооперативного механизма диффузии за счет локальных дефектов и изменения состава поверхности и междоменных границ.
Полный текст
 
												
	                        Об авторах
В. А. Садыков
Институт катализа им. Г.К. Борескова СО РАН
							Автор, ответственный за переписку.
							Email: sadykov@catalysis.ru
				                					                																			                												                	Россия, 							Новосибирск						
Е. М. Садовская
Институт катализа им. Г.К. Борескова СО РАН
														Email: sadykov@catalysis.ru
				                					                																			                												                	Россия, 							Новосибирск						
Ю. Н. Беспалко
Институт катализа им. Г.К. Борескова СО РАН
														Email: sadykov@catalysis.ru
				                					                																			                												                	Россия, 							Новосибирск						
Е. А. Смаль
Институт катализа им. Г.К. Борескова СО РАН
														Email: sadykov@catalysis.ru
				                					                																			                												                	Россия, 							Новосибирск						
О. А. Булавченко
Институт катализа им. Г.К. Борескова СО РАН
														Email: sadykov@catalysis.ru
				                					                																			                												                	Россия, 							Новосибирск						
Н. Ф. Еремеев
Институт катализа им. Г.К. Борескова СО РАН
														Email: yeremeev21@catalysis.ru
				                					                																			                												                	Россия, 							Новосибирск						
И. П. Просвирин
Институт катализа им. Г.К. Борескова СО РАН
														Email: sadykov@catalysis.ru
				                					                																			                												                	Россия, 							Новосибирск						
М. А. Михайленко
Институт химии твердого тела и механохимии СО РАН
														Email: sadykov@catalysis.ru
				                					                																			                												                	Россия, 							Новосибирск						
М. В. Коробейников
Институт ядерной физики им. Г.И. Будкера СО РАН
														Email: sadykov@catalysis.ru
				                					                																			                												                	Россия, 							Новосибирск						
Список литературы
- Afroze, S., Reza, M.S., Amin, M.R., Taweekun, J., and Azad, A.K., Progress in nanomaterials fabrication and their prospects in artificial intelligence towards solid oxide fuel cells: A review, Int. J. Hydrogen Energy, 2024, vol. 52C, p. 216. https://doi.org/10.1016/j.ijhydene.2022.11.335
- Yadav, A.K., Sinha, S., and Kumar, A., Advancements in composite cathodes for intermediate-temperature solid oxide fuel cells: A comprehensive review, Int. J. Hydrogen Energy, 2024, vol. 59, p. 1080. https://doi.org/10.1016/j.ijhydene.2024.02.124
- Li, M., Wang, J., Chen, Z., Qian, X., Sun, C., Gan, D., Xiong, K., Rao, M., Chen, C., and Li, X., A comprehensive review of thermal management in solid oxide fuel cells: Focus on burners, heat exchangers, and strategies, Energies, 2024, vol. 17, no. 5, p. 1005. https://doi.org/10.3390/en17051005
- Yuan, Q., Li, X., Han, S., Wang, S., Wang, M., Chen, R., Kudashev, S., Wei, T., and Chen, D., Performance analysis and optimization of SOFC/GT hybrid systems: A review, Energies, 2024, vol. 17, no. 5, p. 1265. https://doi.org/10.3390/en17051265
- Helal, H., Ahrouch, M., Rabehi, A., Zappa, D., and Comini, E., Nanostructured materials for enhanced performance of solid oxide fuel cells: A comprehensive review, Crystals, 2024, vol. 14, no. 4, p. 306. https://doi.org/10.3390/cryst14040306
- Kalinina, E. and Pikalova, E., Opportunities, challenges and prospects for electrodeposition of thin-film functional layers in solid oxide fuel cell technology, Materials, 2021, vol. 14, no. 19, p. 5584. https://doi.org/10.3390/ma14195584
- Iqbal, M.A., Jaiswal, S.K., and Quaff, A.R., Increasing Efficiency of Oxygen Separation from Air Through Ceramic Membranes – A Review, in Fluid Mechanics and Hydraulics, HYDRO 2021. Lecture Notes in Civil Engineering, vol. 314, Timbadiya, P.V., Patel, P.L., Singh, V.P., and Barman, B., Eds, Singapore: Springer, 2023, p. 533. https://doi.org/10.1007/978-981-19-9151-6_43
- Chen, G., Widenmeyer, M., Yu, X., Han, N., Tan, X., Homm, G., Liu, S., and Weidenkaff, A., Perspectives on achievements and challenges of oxygen transport dual-functional membrane reactors, J. Am. Ceram. Soc., 2024, vol. 107, no. 3, p. 1490. https://doi.org/10.1111/jace.19411
- Yan, F., Qian, J., Wang, S., and Zhai, J., Progress and outlook on lead-free ceramics for energy storage applications, Nano Energy, 2024, vol. 123, p. 109394. https://doi.org/10.1016/j.nanoen.2024.109394
- Hu, Z., Yin, H., Li, M., Li, J., and Zhu, H., Research and developments of ceramic-reinforced steel matrix composites – A comprehensive review, Int. J. Adv. Manuf. Technol., 2024, vol. 131, p. 125. https://doi.org/10.1007/s00170-024-13123-8
- Zhang, S., Qiu, Q., Zeng, C., Paik, K.-W., He, P., and Zhang, S., A review on heating mechanism, materials and heating parameters of microwave hybrid heated joining technique, J. Manuf. Process., 2024, vol. 116, p. 176. https://doi.org/10.1016/j.jmapro.2024.02.055
- Sadykov, V., Usoltsev, V., Fedorova, Yu., Mezentseva, N., Krieger, T., Eremeev, N., Arapova, M., Ishchenko, A., Salanov, A., Pelipenko, V., Muzykantov, V., Ulikhin, A., Uvarov, N., Bobrenok, O., Vlasov, A., Korobeynikov, M., Bryazgin, A., Arzhannikov, A., Kalinin, P., Smorygo, O., and Thumm, M., Advanced sintering techniques in design of planar IT SOFC and supported oxygen separation membranes, in Sintering of Ceramics – New Emerging Techniques, Lakshmanan, A., Ed, Vienna: InTech, 2012, p. 121. https://doi.org/10.5772/34958
- Lisitsyn, V., Tulegenova, A., Golkovski, M., Polisadova, E., Lisitsyna, L., Mussakhanov, D., and Alpyssova, G., Radiation synthesis of high-temperature wide-bandgap ceramics, Micromachines, 2023, vol. 14, no. 12, p. 2193. https://doi.org/10.3390/mi14122193
- Angappan, G., Sivaraj, S., Mohankumar, M., Vaidyanathan, E., and Joseph, A., Recent developments in additive manufacturing equipment's and its processes, in Additive Manufacturing with Novel Materials: Processes, Properties and Applications, Rajasekar, R., Moganapriya, C., and Sathish Kumar, P., Eds, Scrivener Publishing LLC, 2024, p. 23. https://doi.org/10.1002/9781394198085.ch2
- Burdovitsin, V., Dvilis, E., Zenin, A., Klimov, A., Oks, E., Sokolov, V., Kachaev, A.A., and Khasanov, O.L., Electron beam sintering of zirconia ceramics, Adv. Mat. Res., 2014, vol. 872, p. 150. https://doi.org/10.4028/www.scientific.net/AMR.872.150
- Martin, B., Amos, D., Brehob, E., van Hest, M.F., and Druffel, T., Techno-economic analysis of roll-to-roll production of perovskite modules using radiation thermal processes, Appl. Energy, 2022, vol. 307, p. 118200. https://doi.org/10.1016/j.apenergy.2021.118200
- Ancharova, U., Mikhailenko, M., Tolochko, B., Lyakhov, N., Korobeinikov, M., Bryazgin, A., Bezuglov, V.V., Shtarklev, E.A., Vlasov, A. Yu., and Vinokurov, Z.S., Synthesis and staging of the phase formation for strontium ferrites in thermal and radiation-thermal reactions, IOP Conf. Ser. Mater. Sci. Eng., 2015, vol. 81, p. 012122. https://doi.org/10.1088/1757–899X/81/1/012122
- Bespalko, Yu., Eremeev, N., Sadovskaya, E., Krieger, T., Bulavchenko, O., Suprun, E., Mikhailenko, M., Korobeynikov, M., and Sadykov, V., Synthesis and oxygen mobility of bismuth cerates and titanates with pyrochlore structure, Membranes, 2023, vol. 13, no. 6, p. 598. https://doi.org/10.3390/membranes13060598
- Садыков, В.А., Садовская, Е.М., Еремеев, Н.Ф., Скрябин, П.И., Краснов, А.В., Беспалко, Ю.Н., Павлова, С.Н., Федорова, Ю.Е., Пикалова, Е.Ю., Шляхтина А.В. Подвижность кислорода материалов твердооксидных топливных элементов и каталитических мембран (обзор). Электрохимия. 2019. Т. 55. С. 899. [Sadykov, V.A., Sadovskaya, E.M., Eremeev, N.F., Skriabin, P.I., Krasnov, A.V., Bespalko, Yu.N., Pavlova, S.N., Fedorova, Yu.E., Pikalova, E. Yu., and Shlyakhtina, A.V., Oxygen mobility in the materials for solid oxide fuel cells and catalytic membranes (review), Russ. J. Electrochem., 2019, vol. 55, p. 701.] https://doi.org/10.1134/S1023193519080147
- Sadykov, V., Eremeev, N., Sadovskaya, E., Bespalko, Yu., Simonov, M., Arapova, M., and Smal, E., Nanomaterials with oxygen mobility for catalysts of biofuels transformation into syngas, SOFC and oxygen/hydrogen separation membranes: Design and performance, Catal. Today, 2023, vol. 423, p. 113936. https://doi.org/10.1016/j.cattod.2022.10.018
- Sadykov, V., Pikalova, E., Sadovskaya, E., Shlyakhtina, A., Filonova, E., and Eremeev, N., Design of mixed ionic-electronic materials for permselective membranes and solid oxide fuel cells based on their oxygen and hydrogen mobility, Membranes, 2023, vol. 13, no. 8, p. 698. https://doi.org/10.3390/membranes13080698
- Baratov, S., Filonova, E., Ivanova, A., Hanif, M.B., Irshad, M., Khan, M.Z., Motola, M., Rauf, D., and Medvedev, D., Current and further trajectories in designing functional materials for solid oxide electrochemical cells: A review of other reviews, J. Energy Chem., 2024, vol. 94, p. 302. https://doi.org/10.1016/j.jechem.2024.02.047
- Hussain, S. and Yangping, L., Review of solid oxide fuel cell materials: Cathode, anode, and electrolyte, Energy Transit., 2020, vol. 4, p. 113. https://doi.org/10.1007/s41825-020-00029-8
- Pikalova, E. Yu., Guseva, E.M., and Filonova, E.A., Short review on recent studies and prospects of application of rare-earth-doped La2NiO4+δ as air electrodes for solid-oxide electrochemical cells, Electrochem. Mater. Technol., 2023, vol. 2, p. 20232025. https://doi.org/10.15826/elmattech.2023.2.025
- Nande, A., Chaudhari, V., Punde, J.D., and Dhoble, S.J., Rare-earth doped cathode materials for solid oxide fuel cells, in Emerging Energy Materials, Nair, G., Nagabhushana, H., Dhoble, N., and Dhoble, S.J., Eds, Boca Raton: CRC Press, 2024, p. 32. https://doi.org/10.1201/9781003315261-3
- Oh, S., Kim, H., Jeong, I., Kim, D., Yu, H., and Lee, K.T., Recent progress in oxygen electrodes for protonic ceramic electrochemical cells, J. Korean Ceram. Soc., 2024, vol. 61, p. 224. https://doi.org/10.1007/s43207-023-00360-y
- Tarutin, A.P., Lyagaeva, J.G., Medvedev, D.A., Bi, L., and Yaremchenko, A.A., Recent advances in layered Ln2NiO4+δ nickelates: Fundamentals and prospects of their applications in protonic ceramic fuel and electrolysis cells, J. Mater. Chem. A, 2021, vol. 9, p. 154. https://doi.org/10.1039/D0TA08132A
- Li, X. and Benedek, N.A., Enhancement of ionic transport in complex oxides through soft lattice modes and epitaxial strain, Chem. Mater., 2015, vol. 27, p. 2647. https://doi.org/10.1021/acs.chemmater.5b00445
- Yang, S., Liu, G., Lee, Y.-L., Bassat, J.-M, Gamon, J., Villesuzanne, A., Pietras, J., Zhou, X.-D., and Zhong, Y., A systematic ab initio study of vacancy formation energy, diffusivity, and ionic conductivity of Ln2NiO4+δ (Ln = La, Nd, Pr), J. Power Sources, 2023, vol. 576, p. 233200. https://doi.org/10.1016/j.jpowsour.2023.233200
- Bamburov, A., Naumovich, Ye., Khalyavin, D.D., and Yaremchenko, A.A., Intolerance of the Ruddlesden–Popper La2NiO4+δ structure to A-site cation deficiency, Chem. Mater., 2023, vol. 35, no. 19, p. 8145. https://doi.org/10.1021/acs.chemmater.3c01594
- Pikalova, E., Eremeev, N., Sadovskaya, E., Sadykov V., Tsvinkinberg, V., Pikalova, N., Kolchugin, A., Vylkov, A., Baynov, I., and Filonova, E., Influence of the substitution with rare earth elements on the properties of layered lanthanum nickelate – Part 1: Structure, oxygen transport and electrochemistry evaluation, Solid State Ionics, 2022, vol. 379, p. 115903. https://doi.org/10.1016/j.ssi.2022.115903
- Pikalova, E., Sadykov, V., Tsvinkinberg, V., Kolchugin, A., Zhulanova, T., Guseva, E., Eremeev, N., Sadovskaya, E., Belyaev, V., and Filonova, E., Boosting the oxygen transport kinetics and functional properties of La2NiO4+δ via partial La-to-Sm substitution, J. Alloys and Compd., 2024, vol. 980, p. 173648. https://doi.org/10.1016/j.jallcom.2024.173648
- Vibhu, V., Rougier, A., Nicollet, C., Flura, A., Grenier, J.-C., and Bassat, J.-M., La2–xPrxNiO4+δ as suitable cathodes for metal supported SOFCs, Solid State Ionics, 2015, vol. 278, p. 32. https://doi.org/10.1016/j.ssi.2015.05.005
- Sadykov, V.A., Sadovskaya, E.M., Filonova, E.A., Eremeev, N.F., Belyaev, V.D., Tsvinkinberg, V.A., and Pikalova, E. Yu., Oxide ionic transport features in Gd-doped La nickelates, Solid State Ionics, 2020, vol. 357, p. 115462. https://doi.org/10.1016/j.ssi.2020.115462
- Sadykov, V.A., Sadovskaya, E.M., Bespalko, Yu.N., Smal’, E.A., Eremeev, N.F., Prosvirin, I.P., Bulavchenko, O.A., Mikhailenko, M.A., and Korobeynikov, M.V., Structural, surface and oxygen transport properties of Sm-doped Nd nickelates, Solid State Ionics, 2024, vol. 412, p. 116596. https://doi.org/10.1016/j.ssi.2024.116596
- Pikalova, E. Yu., Sadykov, V.A., Filonova, E.A., Eremeev, N.F., Sadovskaya, E.M., Pikalov, S.M., Bogdanovich, N.M., Lyagaeva, J.G., Kolchugin, A.A., Vedmid’, L.B., Ishchenko, A.V., and Goncharov, V.B., Structure, oxygen transport properties and electrode performance of Ca-substituted Nd2NiO4, Solid State Ionics, 2019, vol. 335, p. 53. https://doi.org/10.1016/j.ssi.2019.02.012
- Stoyanovskii, V.O., Vedyagin, A.A., Volodin, A.M., and Bespalko, Yu.N., Effect of carbon shell on stabilization of single-phase lanthanum and praseodymium hexaaluminates prepared by a modified Pechini method, Ceram. Int., 2020, vol. 46, no. 18A, p. 29150. https://doi.org/10.1016/j.ceramint.2020.08.088
- Ancharova, U.V., Mikhailenko, M.A., Tolochko, B.P., Lyakhov, N.Z., Korobeinikov, M.V., Bryazgin, A.A., Bezuglov, V.V., Shtarklev, E.A., Vlasov, A. Yu., and Vinokurov, Z.S., Synthesis and staging of the phase formation for strontium ferrites in thermal and radiation-thermal reactions, IOP Conf. Ser. Mater. Sci. Eng., 2015, vol. 81, p. 012122. https://doi.org/10.1088/1757–899X/81/1/012122
- HighScore Plus | XRD Analysis Software | Malvern Panalytical. https://www.malvernpanalytical.com/en/products/category/software/x-ray-diffraction-software/highscore-with-plus-option (дата обращения: 14.10.2024).
- Kwok, R., XPSPeak Software (Version 4.1). http://xpspeak.software.informer.com/4.1/ (дата обращения: 31.03.2024).
- Moulder, J.F., Stickle, W.F., Sobol, P.E., and Bomben, K.D., Handbook of X-ray Photoelectron Spectroscopy, Eden Prairie, MN, USA: Perkin-Elmer Corporation, 1992, 261 p.
- Scofield, J.H., Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV, J. Electron Spectros. Relat. Phenom., 1976, vol. 8, no. 2, p. 129. https://doi.org/10.1016/0368-2048(76)80015-1
- Pikalova, E. Yu., Kolchugin, A.A., Sadykov, V.A., Sadovskaya, E.M., Filonova, E.A., Eremeev, N.F., and Bogdanovich, N.M., Structure, transport properties and electrochemical behavior of the layered lanthanide nickelates doped with calcium, Int. J. Hydrogen Energy, 2018, vol. 43, no. 36, p. 17373. https://doi.org/10.1016/j.ijhydene.2018.07.115
- Sadykov, V.A., Pikalova, E. Yu., Kolchugin, A.A., Filonova, E.A., Sadovskaya, E.M., Eremeev, N.F., Ishchenko, A.V., Fetisov, A.V., and Pikalov, S.M., Oxygen transport properties of Ca-doped Pr2NiO4, Solid State Ionics, 2018, vol. 317, p. 234. https://doi.org/10.1016/j.ssi.2018.01.035
- Nezhad, P.D.K., Bekheet, M.F., Bonmassar, N., Gili, A., Kamutzki, F., Gurlo, A., Doran, A., Schwarz, S., Bernardi, J., Praetz, S., and Niaei, A., Elucidating the role of earth alkaline doping in perovskite-based methane dry reforming catalysts, Catal. Sci. Technol., 2022, vol. 12, no. 4, p. 1229. https://doi.org/10.1039/D1CY02044G
- Isacfranklin, M., Yuvakkumar, R., Ravi, G., Thambidurai, M., Nguyen, H.D., and Velauthapillai, D., SmNiO3/SWCNT perovskite composite for hybrid supercapacitor, J. Energy Storage, 2023, vol. 68, p. 107786. https://doi.org/10.1016/j.est.2023.107786
- Maksimchuk, T., Filonova, E., Mishchenko, D., Eremeev, N., Sadovskaya, E., Bobrikov, I., Fetisov, A., Pikalova, N., Kolchugin, A., Shmakov, A., Sadykov, V., and Pikalova, E., High-temperature behavior, oxygen transport properties, and electrochemical performance of Cu-substituted Nd1.6Ca0.4NiO4+δ electrode materials, Appl. Sci., 2022, vol. 12, no. 8, p. 3747. https://doi.org/10.3390/app12083747
- Jiang, N., Electron beam damage in oxides: A review, Rep. Prog. Phys., 2015, vol. 79, no. 1, p. 016501. https://doi.org/10.1088/0034-4885/79/1/016501
- Puglisi, O., Marletta, G., and Torrisi, A., Oxygen depletion in electron beam bombarded glass surfaces studied by XPS, J. Non-Cryst. Solids, 1983, vol. 55, no. 3, p. 433. https://doi.org/10.1016/0022-3093(83)90047-9
- Ding, Y., Pradel, K.C., and Wang, Z.L., In situ transmission electron microscopy observation of ZnO polar and non-polar surfaces structure evolution under electron beam irradiation, J. Appl. Phys., 2016, vol. 119, no. 1, p. 015305. https://doi.org/10.1063/1.4939618
- Jun, J., Dhayal, M., Shin, J.-H., Kim, J.-C., and Getoff, N., Surface properties and photoactivity of TiO2 treated with electron beam, Radiat. Phys. Chem., 2006, vol. 75, no. 5, p. 583. https://doi.org/10.1016/j.radphyschem.2005.10.015
- Stevens-Kalceff, M.A., Electron-irradiation-induced radiolytic oxygen generation and microsegregation in silicon dioxide polymorphs, Phys. Rev. Lett., 2000, vol. 84, no. 14, p. 3137. https://doi.org/10.1103/physrevlett.84.3137
- Lee, D. and Lee, H.N., Controlling oxygen mobility in Ruddlesden–Popper oxides, Materials, 2017, vol. 10, no. 4, p. 368. https://doi.org/10.3390/ma10040368
- Nirala, G., Yadav, D., and Upadhyay, S., Ruddlesden–Popper phase A2BO4 oxides: Recent studies on structure, electrical, dielectric, and optical properties, J. Adv. Ceram., 2020, vol. 9, p. 129. https://doi.org/10.1007/s40145-020-0365-x
- Wang, Y., Chen, J., Liu, K., Wang, M., Song, D., and Wang, K., Computational screening of La2NiO4+δ cathodes with Ni site doping for solid oxide fuel cells, Inorg. Chem., 2023, vol. 62, no. 19, p. 7574. https://doi.org/10.1021/acs.inorgchem.3c01044
- Shannon, R.D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. Sec. A, 1976, vol. 32, p. 751. https://doi.org/10.1107/S0567739476001551
- Wang, C., Miao, H., Zhang, X., Huang, J., and Yuan, J., On Fe-based perovskite electrodes for symmetrical reversible solid oxide cells–A review, J. Power Sources, 2024, vol. 596, p. 234112. https://doi.org/10.1016/j.jpowsour.2024.234112
- Boileau, A., Capon, F., Coustel, R., Laffez, P., Barrat, S., and Pierson, J.F., Inductive effect of Nd for Ni3+ stabilization in NdNiO3 synthesized by reactive DC cosputtering, J. Phys. Chem. C, 2017, vol. 121, no. 39, p. 21579. https://doi.org/10.1021/acs.jpcc.7b02251
- Dubois, C., Monty, C., and Philibert, J., Influence of oxygen pressure on oxygen self-diffusion in NiO, Solid State Ionics, 1984, vol. 12, p. 75. https://doi.org/10.1016/0167-2738(84)90132-2
- Dubois, C., Monty, C., and Philibert, J., Oxygen self-diffusion in NiO single crystals, Philos. Mag. A, 1982, vol. 46, no. 3, p. 419. https://doi.org/10.1080/01418618208239569
- Voskresenskaya, E.N., Roguleva, V.G., and Anshits, A.G., Oxidant activation over structural defects of oxide catalysts in oxidative methane coupling, Catal. Rev., 1995, vol. 37, no. 1, p. 101. https://doi.org/10.1080/01614949508007092
- Mierwaldt, D., Roddatis, V., Risch, M., Scholz, J., Geppert, J., Abrishami, M.E., and Jooss, C., Environmental TEM investigation of electrochemical stability of perovskite and Ruddlesden–Popper type manganite oxygen evolution catalysts, Adv. Sustainable Syst., 2017, vol. 1, no. 12, p. 1700109. https://doi.org/10.1002/adsu.201700109
- Bendersky, L.A., Fawcett, I.D., and Greenblatt, M., TEM study of two-dimensional incommensurate modulation in layered La2–2xCa1+2xMn2O7 (0.6 < x < 0.8), Chem. Mater., 2004, vol. 16, no. 25, p. 5304. https://doi.org/10.1021/cm049927e
- Huang, F.-T., Xue, F., Gao, B., Wang, L.H., Luo, X., Cai, W., Lu, X.-Z., Rondinelli, J.M., Chen, L.Q., and Cheong, S.-W., Domain topology and domain switching kinetics in a hybrid improper ferroelectric, Nat. Commun., 2016, vol. 7, p. 11602. https://doi.org/10.1038/ncomms11602
- Usenka, A., Pankov, V., Vibhu, V., Flura, A., Grenier, J.-C., and Bassat, J.-M., Temperature programmed oxygen desorption and sorption processes on Pr2–xLaxNiO4+δ nickelates, ECS Trans., 2019, vol. 91, no. 1, p. 1341. https://doi.org/10.1149/09101.1341ecst
- Sadykov, V.A., Sadovskaya, E.M., Pikalova, E.Yu., Kolchugin, A.A., Filonova, E.A., Pikalov, S.M., Eremeev, N.F., Ishchenko, A.V., Lukashevich, A.I., and Bassat, J.M., Transport features in layered nickelates: Correlation between structure, oxygen diffusion, electrical and electrochemical properties, Ionics, 2018, vol. 24, p. 1181. https://doi.org/10.1007/s11581-017-2279-3
- Tropin, E., Ananyev, M., Porotnikova, N., Khodimchuk, A., Saher, S., Farlenkov, A., Kurumchin, E., Shepel, D., Antipov, E., Istomin, S., and Bouwmeester, H., Oxygen surface exchange and diffusion in Pr1.75Sr0.25Ni0.75Co0.25O4±δ, Phys. Chem. Chem. Phys., 2019, vol. 21, no. 9, p. 4779. https://doi.org/10.1039/C9CP00172G
Дополнительные файлы
 
				
			 
						 
						 
						 
					 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 






