Mathematical modelling of a self-oscillating catalytic reaction in a flow reactor
- Авторлар: Peskov N.V.1, Slinko M.M.2
- 
							Мекемелер: 
							- Moscow State University
- Semenov Institute of Chemical Physics
 
- Шығарылым: Том 65, № 2 (2024)
- Беттер: 224-232
- Бөлім: ARTICLES
- URL: https://cardiosomatics.ru/0453-8811/article/view/660358
- DOI: https://doi.org/10.31857/S0453881124020107
- EDN: https://elibrary.ru/DWLCWO
- ID: 660358
Дәйексөз келтіру
Аннотация
The article is devoted to the analysis of possible spatiotemporal kinetic structures that can arise during catalytic oxidation reactions on metal surfaces at atmospheric pressure. The catalytic oscillatory reaction in a flow reactor is modeled using a 1D system of equations of the reaction–diffusion–convection type. The STM type oscillatory reaction model of catalytic oxidation is used as a kinetic model. The obtained results of mathematical modelling show the decisive influence of an axial mixing in the reactor on the development of spatiotemporal structures. It is also shown that, depending on the ratio of adsorption constants of reacting species, three different isothermal spatiotemporal structures can arise, namely a spatially inhomogeneous stationary state, regular and aperiodic “breathing structures”.
Толық мәтін
 
												
	                        Авторлар туралы
N. Peskov
Moscow State University
							Хат алмасуға жауапты Автор.
							Email: peskovnick@gmail.com
				                					                																			                								
Faculty of Computational Mathematics and Cybernetics
Ресей, Leninskie Gory, Moscow, 119991M. Slinko
Semenov Institute of Chemical Physics
														Email: peskov@cs.msu.ru
				                					                																			                												                	Ресей, 							Kosygina Str., 4, Moscow, 119991						
Әдебиет тізімі
- Schuth F., Henry B.E., Schmidt L.D. // Adv. Catal. 1995. V. 39. P. 51.
- Slinko M.M., Jaeger N.I. Oscillating heterogeneous catalytic systems, V. 86. Eds. B. Delmon and J.T. Yates, Elsevier, 1994.
- Imbihl R., Ertl G. // Chem. Rev. 1995. V. 95. P. 697.
- Bykov V.I., Tsybenova S.B., Yablonsky G. Chemical complexity via simple models. Berlin–Boston: Watler DeGryater GmbH, 2018.
- Luss D, Sheintuch M. // Catal. Today. 2005. V. 105. P. 254.
- Rotermund H.H. // J. Elec. Spectr. Rel. Phen. 1999. V. 98–99. P. 41.
- Wei H., Lilienkamp G., Imbihl R. // Chem. Phys. Lett. 2004. V. 389. P. 284.
- Marwaha B., Annamalai J., Luss D. // Chem. Eng. Sci. 2001. V. 56. P. 89.
- Lobban L., Luss D. // J. Phys. Chem. 1989. V. 93. P. 6530.
- Lobban L., Philippou G., Luss D. // J. Phys. Chem. 1989. V. 93. P. 733.
- Brown J.R., D’Netto G.A., Schmitz R.A. Temporal Order. Eds. L. Rensing and N. Jaeger. Berlin: Springer–Verlag, 1985. P. 86.
- Middya U., Graham M.D., Luss D., Sheintuch M. // J. Chem. Phys. 1993. V. 98. P. 2823.
- Middya U., Luss D. // J. Chem. Phys. 1995. V. 102. P. 5029.
- Sheintuch M., Nekhamkina O. // J. Chem. Phys. 1997. V. 107. P. 8165.
- Digilov R.M., Nekhamkina O., Sheintuch M. // A.I. Ch.E. Journal. 2004. V. 50. P. 163.
- Nekhamkina O., Digilov R.M., Sheintuch M. // J. Chem. Phys. 2003. V. 119. P. 2322.
- Bychkov V.Y., Tyulenin Y.P., Korchak V.N., Aptekar E.L. // Appl. Catal. A: Gen. 2006. V. 304. P. 21.
- Bychkov V.Y., Tyulenin Y.P., Slinko M.M., Korchak V.N. // Appl. Catal. A: Gen. 2007. V. 321. P. 180.
- Bychkov V.Y., Tyulenin Y.P., Slinko M.M., Korchak V.N. // Catal. Lett. 2007. V. 119. P. 339.
- Bychkov V.Y., Tyulenin Y.P., Slinko M.M., Korchak V.N. // Surf. Sci. 2009. V. 603. P. 1680.
- Bychkov V.Y., Tyulenin Y.P., Slinko M.M., Lomonosov V.I., Korchak V.N. // Catal. Lett. 2018. V. 148. P. 3646.
- Bychkov V.Y., Tyulenin Y.P., Slinko M.M., Gorenberg A. Ya., Shashkin D.P., Korchak V.N. // React. Kinet. Mech. Catal. 2019. V. 128. P. 587.
- Kaichev V.V., Gladky A.Y., Prosvirin I.P., Saraev A.A., Hävecker M., Knop-Gericke A., Schlögl R., Bukhtiyarov V.I. // Surf. Sci. 2013. V. 609. P. 113.
- Kaichev V.V., Saraev A.A., Gladky A.Y., Prosvirin I.P., Blume R., Teschner D., Hävecker M., Knop-Gericke A., Schlögl R., Bukhtiyarov V.I. // Phys. Rev. Lett. 2017. V. 119. P. 026001.
- Слинько М.М., Макеев А.Г., Бычков В.Ю., Корчак В.Н. // Кинетика и катализ. 2022. Т. 63. С. 99.
- Sales B.C., Turner J.E., Maple M.B. // Surf. Sci. 1982. V. 114. P. 381.
- Cross M., Greenside H. Pattern formation and dynamics in nonequilibrium systems, Cambridge University Press, 2009.
- Yelenin G.G., Makeev A.G. // Математическое моделирование. 1992. Т. 4. С. 11.
- Peskov N.V., Slinko M.M. Numerical simulation of self-oscillating catalytic reaction in plug-flow reactor. arXiv preprint arXiv:2303.12022. https://arxiv.org/abs/2303.12022
Қосымша файлдар
 
				
			 
						 
					 
						 
						 
						

 
  
  
  Мақаланы E-mail арқылы жіберу
			Мақаланы E-mail арқылы жіберу 
 Ашық рұқсат
		                                Ашық рұқсат Рұқсат берілді
						Рұқсат берілді






