Rhodococcus erythropolis A-27 as a Biocatalyst for Enantioselective Reduction of Ketones in the Presence of High Concentrations of Isopropanol
- Authors: Petukhova N.I.1, Mityagina A.V.1, Zorin V.V.1
- 
							Affiliations: 
							- Ufa State Petroleum Technological University
 
- Issue: Vol 61, No 1 (2025)
- Pages: 16-24
- Section: Articles
- URL: https://cardiosomatics.ru/0555-1099/article/view/683308
- DOI: https://doi.org/10.31857/S0555109925010028
- EDN: https://elibrary.ru/CZEQDB
- ID: 683308
Cite item
Abstract
It has been shown that in the presence of the cells of five strains of Rhodococcus erythropolis, isolated from various anthropogenically polluted ecosystems, and an exogenous reducing agent (isopropanol), enantioselective reduction of ketones (acetophenone and 6-methyl-5-hepten-2-one) occurs with the formation of the corresponding S-configuration alcohols with high enantiomeric excess. Using the most active strain of R. erythropolis A-27 at the optimal concentration of isopropanol, products (S-1-phenylethanol and S-6-methyl-5-hepten-2-ol) were obtained with an enantiomeric excess of at least 99.9 % and a yield of 92 and 93% respectively. This strain was found to be tolerant to isopropanol and could effectively reduce 6-methyl-5-hepten-2-one to S-6-methyl-5-hepten-2-ol in a buffer containing 50% isopropanol.
Full Text
 
												
	                        About the authors
N. I. Petukhova
Ufa State Petroleum Technological University
							Author for correspondence.
							Email: biocatNP@yandex.ru
				                					                																			                												                	Russian Federation, 							Ufa, 450062						
A. V. Mityagina
Ufa State Petroleum Technological University
														Email: a_mityagina@mail.ru
				                					                																			                												                	Russian Federation, 							Ufa, 450062						
V. V. Zorin
Ufa State Petroleum Technological University
														Email: biocatNP@yandex.ru
				                					                																			                												                	Russian Federation, 							Ufa, 450062						
References
- Goldberg K., Schroer K., Lütz S., Liese A. // Appl. Microbiol. Biotechnol. 2007. V. 76. P. 249–255.
- Patel R.N. // Coord. Chem. Rev. 2008. V. 252. P. 659−701.
- Musa M.M., Phillips R.S. // Catal. Sci. Technol. 2011. V. 1. P. 1311–1323.
- Milner S.E., Maguire A.R. // ARKIVOC. 2012. P. 321–382. http://dx.doi.org/10.3998/ark.5550190.0013.109
- Kratzer R., Woodley J.M., Nidetzky B. // Biotechnology Advances. 2015. V. 33. P. 1641–1652.
- de Carvalho C.C.C.R. // Microb. Biotechnol. 2017. V. 10. № 2. P. 250−263.
- Hollmann F., Opperman D.J., Paul C.E. // Angew. Chem. Int. Ed. 2021. V. 60. P. 5644–5665.
- Simić S., Zukić E., Schmermund L., Faber K., Winkler Ch.K., Kroutil W. // Chem. Rev. 2022. V. 122. P. 1052−1126.
- Aranda C., de Gonzalo G. // Molecules. 2020. V. 25(13). Article 3016. https://doi.org/10.3390/molecules25133016
- Sorgedrager M.J., van Rantwijk F., Huisman G.W., Sheldon R.A. // Adv. Synth. Catal. 2008. V. 350. P. 2322–2328.
- Jia Q., Zheng Yu.-C., Li H.-P., Qian X.-L., Zhang Zhi.-J., Xu J.-H. // Appl. Environ. Microbiol. 2022. V. 88. № 9. P. 1–16.
- Itoh N., Isotani K., Nakamura M., Inoue K., Isogai Y., Makino Y. // Appl. Microbiol. Biotechnol. 2012. № 93. P. 1075–1085.
- Шакиров А.Н., Петухова Н.И., Зорин В.В. // Башкирский химический журнал. 2013. Т. 20. № 4. С. 59–63.
- Коршунова И.О., Писцова О.Н., Куюкина М.С., Ившина И.Б. // Прикл. биохимия и микробиология. 2016. Т. 52. № 1. С. 53–61.
- Yang Z., Fu H., Ye W., Xie Y., Liu Q., Wang H., Wei D. // Catal. Sci. Technol. 2020. № 10. Р. 70–78.
- Митягина А.В., Петухова Н.И., Прищепов Ф.А., Зорин В.В. // Башкирский химический журнал. 2021. Т. 28. № 3. С. 41–46.
- Митягина А.В., Рахманов Т.Р., Петухова Н.И., Зорин В.В. // Башкирский химический журнал. 2022. Т. 29. № 1. С. 29–36.
- Xu S., Lin Q., Chen W., Lin R., Shen Y., Tang P. et al. // Catalysts. 2023. V. 13(1). Article 52. https://doi.org/10.3390/catal13010052
- Kim D., Choi K.Y., Yoo M., Zylstra G.J., Kim E. // J. Microbiol. Biotechnol. 2018. V. 28. P. 1037–1051.
- Busch H., Hagedoorn P.-L., Hanefeld U. // Int. J. Mol. Sci. 2019. V. 20. Article 4787. https://doi.org/10.3390/ijms20194787
- Qin L., Wu L., Niе Y., Xu Y. // Catal. Sci. Technol. 2021. V. 11. P. 2637–2651.
- Ivshina I., Bazhutin G., Tyumina E. // Front. Microbiol. 2022. V. 13. Article 967127. https://doi.org/10.3389/fmicb.2022.967127
- Hibino A., Ohtake H. // Process Biochemistry. 2013. V. 48. P. 838–843.
- Honda K., Ono T., Okano K., Miyake R., Dekishima Y., Kawabata H. // J. Biosci. Bioeng. 2019. V. 127. № 2. P. 145–149.
- Kosjek B., Stampfer W., Pogorevc M., Goessler W., Faber K., Kroutil W. // Biotechnol. Bioeng. 2004. V. 86. P. 55–62.
- de Gonzalo G., Lavandera I., Faber K., Kroutil W. // Org. Lett. 2007. V. 9. № 11. P. 2163–2166.
- Yang C., Ying X., Yu M., Zhang Y., Xiong B., Song Q., Wang Z. // J. Industrial Microbiol. Biotechnol. 2012. V. 39. P. 1431–1443.
- Stankeviciute J., Kutanovas S., Rutkiene R., Tauraite D., Striela R., Meskys R. // Peer J. 2015. V. 3. Article e1387. https://doi.org/10.7717/peerj.1387
- Xu G.-Ch., Tang M.-H., Ye Ni // J. Mol. Catalysis B: Enzymatic. 2016. V. 123. P. 67–72.
- Hu J., Li G., Liang C., Shams S., Zhu S., Zheng G. // Process Biochemistry. 2020. V. 92. P. 232–243.
- Hummel W., Abokitse K., Drauz K., Rollmann C., Gröger H. // Adv. Synth. Catal. 2003. V. 345. P. 153–159.
- Stampfer W., Kosjek B., Moitzi C., Kroutil W., Faber K. // Angew. Chem. Int. Ed. Engl. 2002. V. 41. P. 1014–1017.
- Stampfer W., Kosjek B., Faber K., Kroutil W. // J. Org. Chem. 2003. V. 68. P. 402–406.
- Stampfer W., Kosjek B., Kroutil W., Faber K. // Biotechnol. Вioeng. 2003. V. 81. № 7. P. 865–869.
- Short Protocols in Molecular Biology. 3rd Ed. / Eds. F.M. Ausbel, R. Brent , R.E. Kingston, D.D. Moore, J.G. Seidman, J.A. Smith, K. Struhl N.Y.: John Wiley & Sons, 1995. 450 p.
- Ишмуратов Г.Ю., Газетдинов Р.Р., Выдрина В.А., Харисов Р.Я., Яковлев М.П., Муслухов Р.Р. и др. // Вестник Башкирского университета. 2012. Т. 17. № 4. С. 1691–1699.
- Шакиров А.Н., Петухова Н.И., Зорин В.В. // Башкирский химический журнал. 2013. Т. 20. № 4. С. 59–63.
- Schroer K., Tacha E., Lutz S. // Org. Process Res. Dev. 2007. V. 11. № 5. P. 836–841.
- Calvin S.J., Mangan D., Miskelly I., Moody T.S., Stevenson P.J. // Org. Process Res. Dev. 2012. V. 16. P. 82–86.
- Чернявская М.И., Букляревич А.А., Делеган Я.А., Охремчук А.Э., Филонов А.Е., Титок М.А. // Микробиология. 2018. Т. 87. № 5. С. 581–594.
- Yang C., Ying X., Yu M., Zhang Y., Xiong B., Song Q., Wang Z. //J. Ind. Microbiol. Biotech. 2012. V. 39. Р. 1431–1443.
- Chen H., Qian F., Lin H., Chen W., Wang P. // Catalysts. 2020. V. 10. Article 30. https://doi.org/10.3390/catal10010030
- Costa L.F.A., Lemos F., Ramôa Ribeiro F., Cabral J.M.S. // Catalysis Today. 2008. V. 133. P. 625–631.
- Vieira G., de Freitas Araujo D., Lemos T., de Mattos M., de Oliveira M., Melo V. et al. // J. Braz. Chem. Soc. 2010. V. 21. № 8. Р. 1509–1516.
- Шейко Е.А., Медникова Е.Э., Воробьева Т.Е., Чанышева А.Р. // Башкирский химический журнал. 2018. Т. 25. № 1. С. 55–58.
- Mori K., Puapoomchareon P. // Liebigs Ann. Chem. 1989. P. 1261–1262.
- Flechtmann C.A.H., Berisford C.W. // J. Appl. Ent. 2003. V. 127. P. 189–194.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 

 Open Access
		                                Open Access Access granted
						Access granted








