Inducible whole-cell biosensor for detection of formate ions

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Ten strains of the yeast Yarrowia lipolytica were constructed, the genomes of which contain hrGFP gene under the regulation of the formate dehydrogenase promoters. The resulting strains can act as whole-cell biosensors for the detection of formate ions in various mediums. By visual assessment of biomass fluorescence, we selected the three most promising yeast strains. The main biosensor characteristics (threshold sensitivity, amplitude and response time) of the selected strains were measured. As a result, in terms of characteristics, the B26 strain was recognized as the most suitable for the detection of formate ions. A carbon source for the nutrient medium that does not reduce the activation of the biosensor was selected. Furthermore, we showed that unlike formate and formaldehyde, methanol practically does not induce the biosensor fluorescence response.

Толық мәтін

Рұқсат жабық

Авторлар туралы

А. Cherenkova

National Research Center “Kurchatov Institute”; Mendeleev University of Chemical Technology

Email: oligamelkina@gmail.com

Complex of NBICS Technologies

Ресей, Moscow, 123098; Moscow, 125480

Т. Yuzbashev

Rothamsted Research

Email: oligamelkina@gmail.com

Plant Sciences and the Bioeconomy

Ұлыбритания, West Common, Harpenden, AL5 2JQ, Hertfordshire

О. Melkina

National Research Center “Kurchatov Institute”

Хат алмасуға жауапты Автор.
Email: oligamelkina@gmail.com

Complex of NBICS Technologies

Ресей, Moscow, 123098

Әдебиет тізімі

  1. Robles H. Encyclopedia of Toxicology. 2nd Ed. / Ed. P. Wexler: Elsevier, 2005. P. 378‒380.
  2. Cunha S., Rangaiah G.P., Hidajat K. Computer Aided Chemical Engineering. / Eds. A. Espuña, M. Graells, L. Puigjaner: Elsevier, 2017. V. 40. P. 1093‒1098.
  3. Larsson S., Palmqvist E., Hahn-Hägerdal B., Tengborg C., Stenberg K., Zacchi G., Nilvebrant N.O. // Enzyme Microb. Technol. 1999. V. 24. P. 151‒159.
  4. Zaldivar J., Martinez A., Ingram L.O. // Biotechnol. Bioeng.. 2000. V. 68. № 5. P. 524‒530.
  5. Кочетков А.В. // Строительные материалы. 2011. № 7. С. 44‒46.
  6. Triebig G., Schaller K.H. // Clin Chim Acta. 1980. V. 108. № 3. P. 355‒360.
  7. Ohmori S., Sumii I., Toyonaga Y., Nakata K., Kawase M. //J. Chromatogr. 1988. V. 426. № 1. P. 15‒24.
  8. Kim, J.K., Shiraishi T., Fukusaki E.I., Kobayashi A. // J. Chromatogr. A. 2003. V. 986. № 2. P. 313‒317.
  9. Abolin C., McRae J.D., Tozer T.N., Takki S. // Biochem. Med. 1980. V. 23. № 2. P. 209‒218.
  10. Campos A.F., Cassella R.J. // Food Chem. 2018. V. 269. P. 252‒257.
  11. Cheng Vollmer A., Van Dyk T.K. // Adv. Microb. Physiol. 2004. V. 49. P. 131‒174.
  12. Bazhenov S.V., Novoyatlova U.S., Scheglova E.S., Prazdnova E.V., Mazanko M.S., Kessenikh A.G. et al. // Biosens. Bioelectron. X. 2023. V. 13. https://doi.org/10.1016/j.biosx.2023.100323.
  13. Chistoserdova L., Laukel M., Portais J.C., Vorholt J.A., Lidstrom M.E. // J. Bacteriol. 2004. V. 186. № 1. P. 22‒28.
  14. Godfrey C., Coddington A., Greenwood C., Thomson A.J., Gadsby P.M. // Biochem. J. 1987. V. 243. № 1. P. 225‒233.
  15. Benoit S., Abaibou H., Mandrand-Berthelot M.A. // J. Bacteriol. 1998. V. 180. № 24. P. 6625‒6634.
  16. Sakai Y., Murdanoto A.P., Konishi T., Iwamatsu A., Kato N. // J. Bacteriol. 1997. V. 179. № 14. P. 4480‒4485.
  17. Патент ЕС. 1988. № 0299108A1.
  18. Overkamp K.M., Kötter P., van der Hoek R., Schoondermark-Stolk S., Luttik M.A., van Dijken J.P., Pronk J.T. // Yeast. 2002. V. 19. № 6. P. 509‒520.
  19. Kobayashi A., Taketa M., Sowa K., Kano K., Higuchi Y., Ogata H. // IUCrJ. 2023. V. 10. P. 544‒554.
  20. Патент Великобритания, Германия. 2022. № WO2022008929A1.
  21. Маниатис Т., Фрич Э., Сэмбрук Дж. Методы генетической инженерии. Молекулярное клонирование. Москва: Мир, 1984. 480 с.
  22. Yuzbashev T.V., Yuzbasheva E.Y., Melkina O.E., Patel D., Bubnov D., Dietz H., Ledesma-Amaro R. // Commun. Biol. 2023. V. 6. № 1. P. 858.
  23. Yurimoto H., Komeda T., Lim C.R., Nakagawa T., Kondo K., Kato N., Sakai Y. // Biochim. Biophys. Acta. 2000. V. 1493. P. 56–63.
  24. Hartner F.S., Glieder A. // Microb. Cell Fact. 2006. V. 5. P. 39.
  25. Chen N.H., Djoko K.Y., Veyrier F.J., McEwan A.G. // Front Microbiol. 2016. V. 7. P. 257.
  26. Liu A., Feng R., Liang B. // Enzyme Microb. Technol. 2016. V. 91. P. 59–65.
  27. Buttery J.E., Chamberlain B.R. // J. Anal. Toxicol. 1988. V. 12. № 5. P. 292–294.
  28. Ogata M., Iwamoto T. // Int. Arch. Occup. Environ. Health. 1990. V. 62. № 3. P. 227–232.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Fluorescence (hrGFP) of the yeast strain biomass after cultivation for 20 h on YNB agar medium with 1% glucose without formate (a) and with the addition of 10 mM sodium formate (b). The control strain Y-3178 W29 MatA (wild type) is designated as wt.

Жүктеу (199KB)
3. Fig. 2. Dependence of the normalized optical density (OD) fluorescence of strains A1 (a), B26 (b) and B29 (c) on the incubation time in a medium with sodium formate: 1 ‒ without sodium formate, 2 ‒ 10 μM, 3 ‒ 100 μM, 4 ‒ 1 mM, 5 ‒ 10 mM, 6 ‒ 90 mM, 7 ‒ 440 mM.

Жүктеу (368KB)
4. Fig. 3. Dependence of the maximum response (AR) of strains A1, B26 and B29 on different concentrations of sodium formate. 1 ‒ A1, 2 ‒ B26, 3 ‒ B29.

Жүктеу (84KB)
5. Fig. 4. Effect of carbon sources in the nutrient medium on the activation of the B26 biosensor with the addition of 10 mM formate: 1 ‒ glucose (1%), 2 ‒ glucose and formate, 3 ‒ sorbitol (1.5%), 4 ‒ sorbitol and formate, 5 ‒ mannitol (1%), 6 ‒ mannitol and formate, 7 ‒ citrate (1%), 8 ‒ citrate and formate.

Жүктеу (131KB)
6. Fig. 5. Dependence of the normalized optical density (OD) fluorescence of the B26 biosensor on the incubation time in a nutrient medium containing mannitol (1%) and sodium formate (a), formaldehyde (b) or methanol (c) at concentrations: 1 ‒ without addition, 2 ‒ 10 μM, 3 ‒ 100 μM, 4 ‒ 1 mM, 5 ‒ 10 mM, 6 ‒ 100 mM.

Жүктеу (302KB)

© Russian Academy of Sciences, 2024