Corrosive Activity of Microorganisms Isolated from Fouling of Structural Materials in the Coastal Zone of the Barents Sea
- Autores: Vlasov D.Y.1,2, Bryukhanov A.L.3, Nyanikova G.G.4, Zelenskaya M.S.1, Tsarovtseva I.M.5, Izatulina A.R.6
- 
							Afiliações: 
							- Saint Petersburg State University, Faculty of Biology
- Komarov Botanical Institute of RAS
- Lomonosov Moscow State University, Faculty of Biology
- Saint Petersburg State Institute of Technology (Technical University), Faculty of Chemical and Biotechnology
- Vedeneev All-Russian Scientific Research Institute of Hydraulic Engineering
- Saint Petersburg State University, Institute of Earth Sciences
 
- Edição: Volume 59, Nº 4 (2023)
- Páginas: 355-368
- Seção: Articles
- URL: https://cardiosomatics.ru/0555-1099/article/view/674608
- DOI: https://doi.org/10.31857/S0555109923040189
- EDN: https://elibrary.ru/QZTZAQ
- ID: 674608
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Potentially corrosive active microorganisms isolated from structural materials with signs of biofouling on the coast of Kislaya Bay (Barents Sea, Russia) were studied: sulfate-reducing, iron-oxidizing and sulfur-oxidizing bacteria. Cultures of sulfate-reducing bacteria (Desulfovibrio sp., Halodesulfovibrio sp.), sulfur-oxidizing bacteria (Dietzia sp.), and iron-oxidizing bacteria (Pseudomonas fluorescens, Bacillus sp.) were identified on the basic of the determining the nucleotide sequences of the 16S rRNA gene. The methods of scanning electron microscopy, energy dispersive microanalysis of the chemical composition and X-ray phase analysis revealed significant changes in the structure and chemical composition of the surface layer of steel reinforcement samples exposed for 28 days in the presence of isolated microorganisms that demonstrated their active participation in corrosion processes. It has been shown that the formation of mineral analogues in corrosion products depends on the strains of studied bacteria and peculiarities of their metabolism. Sulfate-reducing bacteria isolated from the littoral zone of the Barents Sea showed the highest activity in the development of corrosion processes.
Sobre autores
D. Vlasov
Saint Petersburg State University, Faculty of Biology; Komarov Botanical Institute of RAS
							Autor responsável pela correspondência
							Email: dmitry.vlasov@mail.ru
				                					                																			                												                								Russia, 199034, Saint Petersburg; Russia, 197376, Saint Petersburg						
A. Bryukhanov
Lomonosov Moscow State University, Faculty of Biology
														Email: dmitry.vlasov@mail.ru
				                					                																			                												                								Russia, 119234, Moscow						
G. Nyanikova
Saint Petersburg State Institute of Technology (Technical University),Faculty of Chemical and Biotechnology
														Email: dmitry.vlasov@mail.ru
				                					                																			                												                								Russia, 190013, Saint Petersburg						
M. Zelenskaya
Saint Petersburg State University, Faculty of Biology
														Email: dmitry.vlasov@mail.ru
				                					                																			                												                								Russia, 199034, Saint Petersburg						
I. Tsarovtseva
Vedeneev All-Russian Scientific Research Institute of Hydraulic Engineering
														Email: dmitry.vlasov@mail.ru
				                					                																			                												                								Russia, 195220, Saint Petersburg						
A. Izatulina
Saint Petersburg State University, Institute of Earth Sciences
														Email: dmitry.vlasov@mail.ru
				                					                																			                												                								Russia, 199034, Saint Petersburg						
Bibliografia
- Beech I.B., Sunner J. // Biotechnol. 2004. V. 15. № 3. P. 181–186.
- Kip N., van Veen J.A. // ISME J. 2015. V. 9. № 3. P. 542–551.
- Bryukhanov A.L., Vlasov D.Y., Maiorova M.A., Tsarovtseva I.M. // Power Technol. Eng. 2021. V. 54. № 5. P. 609–614.
- Nyanikova G., Bryukhanov A., Vlasov D., Mayorova M., Nurmagomedov M., Akhaev D., Tsarovtseva I. // E3S Web Conf. 2020. V. 215. P. 1–9 (04001).https://doi.org/10.1051/e3sconf/202021504001
- Videla H.A., Herrera L.K. // Int. Microbiol. 2005. V. 8. № 3. P. 169–180.
- Ma Y., Zhang Y., Zhang R., Guan F., Hou B., Duan J. // Biotechnol. 2020. V. 104. № 2. P. 515–525.
- Procópio L. // World J. Microbiol. Biotechnol. 2019. V. 35. № 5. P. 73. https://doi.org/10.1007/s11274-019-2647-4
- Procópio L. // Arch. Microbiol. 2022. V. 204. № 2. P. 138. https://doi.org/10.1007/s00203-022-02755-7
- Amendola R., Acharjee A. // Front. Microbiol. 2022. V. 13. P. 806688. https://doi.org/10.3389/fmicb.2022.806688
- Loto C.A. // J. Adv. Manuf. Technol. 2017. V. 92. P. 4241–4252.
- Bryukhanov A.L., Majorova M.A., Tsarovtseva I.M. // Limnol. Freshw. Biol. 2020. V. 3. № 4. P. 969–970.
- Kim B.H., Lim S.S., Daud W.R., Gadd G.M., Chang I.S. // Bioresour. Technol. 2015. V. 190. P. 395–401.
- Moura V., Ribeiro I., Moriggi P., Capao A., Salles C., Bitati S., Procópio L. // Arch. Microbiol. 2018. V. 200. № 10. P. 1447–1456.
- Enning D., Venzlaff H., Garrelfs J., Dinh H.T., Meyer V., Mayrhofer K. et al. // Environ. Microbiol. 2012. V. 14. № 7. P. 1772–1787.
- Etim I.N., Wei J., Dong J., Xu D., Chen N., Wei X., Su M., Ke W. // Biofouling. 2018. V. 34. № 10. P. 1121–1137.
- Mustin C., Berthelin J., Marion P., de Donato P. // Appl. Environ. Microbiol. 1992. V. 58. № 4. P. 1175–1182.
- López A.I., Marín I., Amils R. // Microbiologia. 1994. V. 10. № 1–2. P. 121–130.
- Inaba Y., Xu S., Vardner J.T., West A.C., Banta S. // Appl. Environ. Microbiol. 2019. V. 85. № 21. e01381–19. https://doi.org/10.1128/AEM.01381-19
- Huang Y., Xu D., Huang L.Y., Lou Y.T., Muhadesi J.B., Qian H.C., Zhou E.Z., Wang B.J, Li X.T., Jiang Z., Liu S.J., Zhang D.W., Jiang C.Y. // NPJ Biofilms Microbiomes. 2021. V. 7. № 1. P. 6.
- Emerson D. // Biofouling. 2018. V. 34. № 9. P. 989–1000.
- Maeda T., Negishi A., Komoto H., Oshima Y., Kamimura K., Sugio T. // J. Biosci. Bioeng. 1999. V. 88. № 3. P. 300–305.
- Makita H. // World J. Microbiol. Biotechnol. 2018. V. 34. № 8. P. 110.
- Ravenschlag K., Sahm K., Knoblauch C., Jørgensen B.B., Amann R. // Appl. Environ. Microbiol. 2000. V. 66. № 8. P. 3592–3602.
- Muyzer G., Stams A.J.M. // Nat. Rev. Microbiol. 2008. V. 6. № 6. P. 441–454.
- Hamilton W.A. // Annu. Rev. Microbiol. 1985. V. 39. P. 195–217.
- Dinh H.T., Kuever J., Mussmann M., Hassel A.W., Stratmann M., Widdel F. // Nature. 2004. V. 427. № 6977. P. 829–832.
- Enning D., Garrelfs J. // Appl. Environ. Microbiol. 2014. V. 80. № 4. P. 1226–1236.
- Videla H.A. // Biofouling. 2000. V. 15. № 1–3. P. 37–47.
- Ziadi I., Alves M.M., Taryba M., El-Bassi L., Hassairi H., Bousselmi L., Montemor M.F., Akrout H. // Bioelectrochemistry. 2020. V. 132. P. 107413.
- Yang S.S., Lin J.Y., Lin Y.T. // J. Microbiol. Immunol. Infect. 1998. V. 31. № 3. P. 151–164.
- Zhang Y., Ma Y., Duan J., Li X., Wang J., Hou B. // Biofouling. 2019. V. 35. № 4. P. 429–442.
- Захарова Ю.Р., Парфенова В.В. // Известия РАН. Серия Биологическая. 2007. № 3. С. 290–295.
- Widdel F., Bak F. The Prokaryotes. 2 Ed. / Eds. A. Balows, H.G. Trüper, M. Dworkin, W. Harder, K.-H. Schleifer. N.Y.: Springer-Verlag. 1992. V. 4. P. 3352–3378.
- Брюханов А.Л., Нетрусов А.И., Шестаков А.И., Котова И.Б. Методы исследования анаэробных микроорганизмов. М.: Научная библиотека МГУ, 2015. 178 с.
- Beijerinck M.W. // Archs. Neerrl. Science Series. 1904. V. 29. P. 131–157.
- Issayeva A.U., Pankiewicz R., Otarbekova A.A. // Pol. J. Environ. Stud. 2020. V. 29. № 6. P. 4101–4108.
- Trüper H.G., Schlegel H.G. // Antonie van Leeuwenhoek. 1964. V. 30. P. 225–238.
- Lane D.J. Nucleic Acid Techniques in Bacterial Systematic. / Eds. E. Stackebrandt, M. Goodfello. Chichester: John Wiley & Sons. 1991. P. 115–175.
- Herlemann D.P., Labrenz M., Jurgens K., Bertilsson S., Waniek J.J., Andersson A.F. // ISME J. 2011. V. 5. № 10. P. 1571–1579.
- Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K., Madden T.L. // BMC Bioinformatics. 2009. V. 10. P. 421.
- Wang Q., Garrity G.M., Tiedje J.M., Cole J.R. // Appl. Environ. Microbiol. 2007. V. 73. № 16. P. 5261–5267.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 





