Effect of the mineral composition of sulfide raw materials on bioleaching of sulfide minerals
- Autores: Bulaev A.G.1, Muravyov M.I.1, Melamud V.S.1, Fomchenko N.V.1
- 
							Afiliações: 
							- Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences
 
- Edição: Volume 61, Nº 2 (2025)
- Páginas: 185-193
- Seção: Articles
- URL: https://cardiosomatics.ru/0555-1099/article/view/687475
- DOI: https://doi.org/10.31857/S0555109925020087
- EDN: https://elibrary.ru/EOQXGV
- ID: 687475
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Bioleaching of nickel-copper sulfide ore, 2 sulfide copper-nickel concentrates, and copper-zinc concentrate was studied. It was shown that specific rates of nickel leaching were similar in experiments with all studied raw materials. It was 59.3, 58.7, and 54.4 mg/(g·d) in the case of the ore, concentrate 1, and concentrate 2, respectively. Specific rate of zinc leaching from copper-zinc concentrate was 248.6 mg/(g·d). Copper extraction level reached 98.5%, while its content decreased from 7.4% (in the concentrate) to 0.21% (leaching residue). Specific copper leaching rate (7.3–14.8 mg/(g·d)) was lower than those of nickel and zinc. In contrast to nickel and zinc, copper content in bioleaching residue increased in comparison to the concentrate: in the case of copper-nickel concentrates it increased from 15.1 to 17.8% (concentrate 1) and from 19.1 to 19.7% (concentrate 2), while in the case of copper-zinc concentrate, it increased from 10.1 to 16.1%. Thus, bioleaching of all studied concentrates made it possible to obtain copper concentrates with comparatively high copper content (16–19%), which can be commercial products for pyrometallurgy. A comparative analysis of the leaching processes of the selected raw materials will allow to assess the prospects of using the approach under study for processing concentrates and ores of various compositions and with different ratios of non-ferrous metal minerals.
Palavras-chave
Texto integral
 
												
	                        Sobre autores
A. Bulaev
Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: bulaev.inmi@yandex.ru
				                					                																			                								
Winogradsky Institute of Microbiology
Rússia, Moscow, 119071M. Muravyov
Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences
														Email: bulaev.inmi@yandex.ru
				                					                																			                								
Winogradsky Institute of Microbiology
Rússia, Moscow, 119071V. Melamud
Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences
														Email: bulaev.inmi@yandex.ru
				                					                																			                								
Winogradsky Institute of Microbiology
Rússia, Moscow, 119071N. Fomchenko
Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences
														Email: bulaev.inmi@yandex.ru
				                					                																			                								
Winogradsky Institute of Microbiology
Rússia, Moscow, 119071Bibliografia
- Brierley C., Brierley J. // Appl. Microbiol. Biotechnol. 2013. V. 97. № 17. P. 7543–7552. https://doi.org/10.1007/s00253-013-5095-3
- Batty J., Rorke G. // Hydrometallurgy. 2006. V. 83. № 1–4. P. 83–89. https://doi.org/10.1016/j.hydromet.2006.03.049
- Gentina J.C., Acevedo F. // Minerals. 2016. V. 6. № 1. 23. https://doi.org/10.3390/min6010023
- Johnson D. // Minerals. 2018. V. 8. № 8. 343. https://doi.org/10.3390/min8080343
- Fomchenko N., Muravyov M. // Minerals. 2020. V. 10. № 12. 1097. https://doi.org/10.3390/min10121097
- Kaksonen A.H., Lakaniemi A.-M., Tuovinen O.H. // J. Cleaner Prod. 2020. V. 264. 121586. https://doi.org/10.1016/j.jclepro.2020.121586
- Kaksonen A.H., Mudunuru B.M., Hackl R. // Hydrometallurgy. 2014. V. 142. P. 70–83. https://doi.org/10.1016/j.hydromet.2013.11.008
- Mahmoud A., Ceza P., Hoadley A.F.A., Contamin F., D’Hugues P. // Int. Biodeterior. Biodegrad. 2017. V. 119. P. 118–146. https://doi.org/10.1016/j.ibiod.2016.09.015
- Fomchenko N., Muravyov M. // Hydrometallurgy. 2019. V. 185. P. 82–87. https://doi.org/10.1016/j.hydromet.2019.02.002
- Esmailbagi M.R., Schaffie M., Kamyabi A., Ranjbar M. // Hydrometallurgy. 2018. V. 180. P. 139–143. https://doi.org/10.1016/j.hydromet.2018.07.020
- Fomchenko N., Muravyov M. // Appl. Biochem. Microbiol. 2017. V. 53. № 6. P. 715–718. https://doi.org/10.1134/S0003683817060059
- Fomchenko N., Uvarova T., Muravyov M. // Miner. Eng. 2019. V. 138. P. 1–6. https://doi.org/10.1016/j.mineng.2019.04.026
- Watling H.R. // Hydrometallurgy. 2008. V. 91. № 1–4. P. 70–88. https://doi.org/10.1016/j.hydromet.2007.11.012
- Sun J.Z., Wen J.K., Wu B., Chen B.W. // Minerals. 2020. V. 10. № 3. 289. https://doi.org/10.3390/min10030289
- Muravyov M.I., Fomchenko N.V. // Appl. Biochem. Microbiol. 2019. V. 55. № 4. P. 414–419. https://doi.org/10.1134/S0003683819040124
- Muravyov M., Panyushkina A., Bulaev A., Fomchenko N. // Minerals Engineering. 2021. V. 170. 107040. https://doi.org/10.1016/j.mineng.2021.107040
- Muravyov M., Panyushkina A., Fomchenko N. // Journal of Environmental Management. 2022. V. 318. 115587. https://doi.org/10.1016/j.jenvman.2022.115587
- Muravyov M., Panyushkina A. // Hydrometallurgy. 2023. V. 219. 106067. https://doi.org/10.1016/j.hydromet.2023.106067
- Muravyov M., Panyushkina A., Fomchenko N. // Minerals Engineering. 2022. V. 182. 107586. https://doi.org/10.1016/j.mineng.2022.107586
- Муравьёв М.И., Панюшкина А.Е., Меламуд В.С., Булаев А.Г., Фомченко Н.В. // Прикл. биохимия и микробиология. 2021. Т. 57. № 4. С. 380–387. https://doi.org/10.31857/S0555109921040115
- Фомченко Н.В., Панюшкина А.Е., Меламуд В.С., Муравьёв М.И. // Прикл. биохимия и микробиология. 2022. Т. 58. № 4. С. 382–387. https://doi.org/10.31857/S0555109922040043
- Fu K., Ning Y., Chen S., Wang Z. // Mineral Processing and Extractive Metallurgy (Trans. Inst. Min. Metall. C). 2016. V. 125. № 1. P. 1–4. https://doi.org/10.1179/1743285515Y.0000000013
- Zhao H., Wang J., Yang C., Hu M., Gan X., Tao L. et al. // Hydrometallurgy. 2015. V. 151. P. 141–150. https://doi.org/10.1016/j.hydromet.2014.11.009
- Kondrat’eva T.F., Pivovarova T.A., Tsaplina I.A., Fomchenko N.V., Zhuravleva A.E., Murav’ev M.I. et al. // Microbiol. 2012. V. 81. № 1. V. 1–24. https://doi.org/10.1134/S0026261712010080
- Panyushkina A.E., Tsaplina I.A., Kondrat’eva T.F., Belyi A.V., Bulaev A.G. // Microbiol. 2018. V. 87. № 3. P. 326–338. https://doi.org/10.1134/S0026261718030086
- Watling H.R., Collinson D.M., Fjastad S., Kaksonen A.H., Li J., Morris C., Perrot F.A., Rea S.M., Shiers D.W. // Miner. Eng. 2014. V. 58. P. 90–99. https://doi.org/10.1016/j.mineng.2014.01.022
- Mason L.J., Rice N.M. // Miner. Eng. 2002. V. 15. № 11. P. 795–808. https://doi.org/10.1016/S0892-6875(02)00118-8
- Sun J., Wen J., Wu B., Chen B. // Minerals. 2020. V. 10. № 3. 289. https://doi.org/10.3390/min10030289
- Watling H.R. // Hydrometallurgy. 2006. V. 84. № 1–2. P. 81–108. https://doi.org/10.1016/j.hydromet.2006.05.001
- Hedrich S., Joulian C., Graupner T., Schippers A., Guezennec A.G. // Hydrometallurgy. 2018. V. 179. P. 125–131. https://doi.org/10.1016/j.hydromet.2018.05.018
- Silverman M.P., Lundgren D.G. // J. Bacteriol. 1959. V. 77. № 5. P. 642–647. https://doi.org/10.1128/jb.77.5.642-647.1959
- Davis D.G., Jacobsen W.R. // Anal. Chem. 1960. V. 32. № 2. P. 215–217. https://doi.org/10.1021/ac60158a024
- Souza A.D., Pina P.S., Leao V.A., Silva C.A., Siqueira P.F. // Hydrometallurgy. 2007. V. 89. № 1–2. P. 72–81. https://doi.org/10.1016/j.hydromet.2007.05.008
- Wang Y., Chen X., Zhou H. // Biores. Technol. 2018. V. 265. P. 581–585. https://doi.org/10.1016/j.biortech.2018.07.017
- Riekkola-Vanhanen M., Heimala S. // Proceedings of an International Biohydrometallurgy Symposium. 1993. V. 1. P. 561–570.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 






