Phylogenetic Composition of Microbial Communities from Fouling of Titanium Plates in the Coastal Zone of the Black and White Seas

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

With high-throughput sequencing of the variable region V3–V4 of the 16S rRNA gene, the study of the full phylogenetic composition of microbial communities developed on the surface of titanium plates exposed in the water column of the coastal zone of the Black and White Seas was carried out. The presence of potentially corrosive microorganisms from various physiological groups, such as sulfate-reducing bacteria, acidophilic iron-oxidizing bacteria and archaea, sulfur-oxidizing and nitrifying bacteria, was shown in these foulings. In the foulings of titanium plates exposed in the Black Sea, the most common microorganisms were uncultivated sulfate-reducing bacteria of the order Desulfotomaculales, which accounted for 8.13% of all 16S rRNA gene sequence reads, as well as acidophilic iron-oxidizing bacteria of the genera Acidiferrobacter (5.47%), Acidithiobacillus (4.52%) and Acidiphilium (2.55%). Acidophilic archaea accounted for up to 7.97% of all reads. In the foulings of titanium plates exposed in the White Sea, the most common were also acidophilic bacteria from the orders Acidiferrobacterales and Acidithiobacillales (7.68%), as well as acidophilic archaea from the order Thermoplasmatales (7.43%). Uncultivated sulfate-reducing bacteria of the order Desulfotomaculales were also represented in relatively high numbers (6.61% of all reads).

全文:

受限制的访问

作者简介

A. Bryukhanov

Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: tashino@mail.ru

Faculty of Biology

俄罗斯联邦, Moscow, 119234

A. Shutova

Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences

Email: tashino@mail.ru
俄罗斯联邦, Moscow, 119071

K. Komarova

Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences

Email: tashino@mail.ru
俄罗斯联邦, Москва, 119071

T. Semenova

Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences

Email: tashino@mail.ru
俄罗斯联邦, Москва, 119071

A. Semenov

Lomonosov Moscow State University

Email: tashino@mail.ru

Faculty of Biology

俄罗斯联邦, Moscow, 119234

V. Karpov

Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences

Email: tashino@mail.ru
俄罗斯联邦, Moscow, 119071

参考

  1. Enning D., Garrelfs J. // Appl. Environ. Microbiol. 2014. V. 80. № 4. P. 1226–1236. https://doi.org/10.1128/AEM.02848-13
  2. Tsarovtceva I.M., Bryukhanov A.L., Vlasov D.Y., Maiyorova M.A. // Power Technol. Eng. 2023. V. 57. № 2. P. 203–208. https://doi.org/10.1007/s10749-023-01643-4
  3. Vlasov D.Y., Bryukhanov A.L., Nyanikova G.G., Zelenskaya M.S., Tsarovtseva I.M., Izatulina A.R. // Appl. Biochem. Microbiol. 2023. V. 59. № 4. P. 425–437. https://doi.org/10.1134/S0003683823040166
  4. Emerson D. // Biofouling. 2018. V. 34. № 9. P. 989–1000. https://doi.org/10.1080/08927014.2018.1526281
  5. Zhang Y., Griffin A., Edwards M. // Environ. Sci. Technol. 2008. V. 42. № 12. P. 4280–4284. https://doi.org/10.1021/es702483d
  6. Magoč T., Salzberg S.L. // Bioinformatics. 2011. V. 27. № 21. P. 2957–2963. https://doi.org/10.1093/bioinformatics/btr507
  7. Edgar R.C. // Bioinformatics. 2010. V. 26. № 19. P. 2460–2461. https://doi.org/10.1093/bioinformatics/btq461
  8. Wang Q., Garrity G.M., Tiedje J.M., Cole J.R. // Appl. Environ. Microbiol. 2007. V. 73. № 16. P. 5261–5267. https://doi.org/10.1128/AEM.00062-07
  9. Liu H., Meng G, Li W., Gu T., Liu H. // Front. Microbiol. 2019. V. 10. P. 1298. https://doi.org/10.3389/fmicb.2019.01298
  10. Barton L.L., Hamilton W.A. In: Sulphate-reducing Bacteria: Environmental and Engineered Systems. / Ed. L.L. Barton, W.A. Hamilton. Cambridge: Cambridge University Press, 2007. 533 p.
  11. Hallberg K.B., Hedrich S., Johnson D.B. // Extremophiles. 2011. V. 15. № 2. P. 271–279. https://doi.org/10.1007/s00792-011-0359-2
  12. Williams K.P., Kelly D.P. // Int. J. Syst. Evol. Microbiol. 2013. V. 63. № 8. P. 2901–2906. https://doi.org/10.1099/ijs.0.049270-0
  13. Jones D.S., Albrecht H.L., Dawson K.S., Schaperdoth I., Freeman K.H., Pi Y., Pearson A., Macalady J.L. // ISME J. 2012. V. 6. № 1. P. 158–170. https://doi.org/10.1038/ismej.2011.75
  14. Gadd G.M. // Geoderma. 2004. V. 122. № 2–4. P. 109–119. https://doi.org/10.1016/j.geoderma.2004.01.002
  15. Li X., Kappler U., Jiang G., Bond P.L. // Front. Microbiol. 2017. V. 8. P. 683. https://doi.org/10.3389/fmicb.2017.00683
  16. Magnuson T.S., Swenson M.W., Paszczynski A.J., Deobald L.A., Kerk D., Cummings D.E. // Biometals. 2010. V. 23. № 6. P. 1129–1138. https://doi.org/10.1007/s10534-010-9360-y
  17. Dopson M., Baker-Austin C., Hind A., Bowman J.P., Bond P.L. // Appl. Environ. Microbiol. 2004. V. 70. № 4. P. 2079–2088. https://doi.org/10.1128/AEM.70.4.2079-2088.2004
  18. Golyshina O.V. // Appl. Environ. Microbiol. 2011. V. 77. № 15. P. 5071–5078. https://doi.org/10.1128/AEM.00726-11
  19. Zhang L., Wu J., Wang Y., Wan L., Mao F., Zhang W., Chen X., Zhou H. // Hydrometallurgy. 2014. V. 146. P. 15–23. https://doi.org/10.1016/j.hydromet.2014.02.013
  20. Golyshina O.V., Yakimov M.M., Lünsdorf H., Ferrer M., Nimtz M., Timmis K.N., et al. // Int. J. Syst. Evol. Microbiol. 2009. V. 59. № 11. P. 2815–2823. https://doi.org/10.1099/ijs.0.009639-0
  21. Ojumu T.V., Petersen J. // Hydrometallurgy. 2011. V. 106. № 1–2. P. 5–11. https://doi.org/10.1016/j.hydromet.2010.11.007
  22. Doughari H.J., Ndakidemi P.A., Human I.S., Benade S. // Microbes Environ. 2011. V. 26. № 2. P. 101–112. https://doi.org/10.1264/jsme2.ME10179
  23. Alain K., Pignet P., Zbinden M., Quillevere M., Duchiron F., Donval J.P., et al. // Int. J. Syst. Evol. Microbiol. 2002. V. 52. № 5. P. 1621–1628. https://doi.org/10.1099/00207713-52-5-1621
  24. Dahle H., Birkeland N.K. // Int. J. Syst. Evol. Microbiol. 2006. V. 56. № 7. P. 1539–1545. https://doi.org/10.1099/ijs.0.63894-0
  25. Yu J., Liberton M., Cliften P.F., Head R.D., Jacobs J.M., Smith R.D., et al. // Sci. Rep. 2015. V. 5. P. 8132. https://doi.org/10.1038/srep08132
  26. Liu X.J., Zhu K.L., Ye Y.Q., Han Z.T., Tan X.Y., Du Z.J., Ye M.Q. // Microb. Genom. 2024. V. 10. № 1. P. 001182. https://doi.org/10.1099/mgen.0.001182
  27. Simankova M.V., Chernych N.A., Osipov G.A., Zavarzin G.A. // Syst. Appl. Microbiol. 1993. V. 16. № 3. P. 385–389. https://doi.org/10.1016/S0723-2020(11)80270-5
  28. Hördt A., López M.G., Meier-Kolthoff J.P., Schleuning M., Weinhold L.M., Tindall B.J., et al. // Front. Microbiol. 2020. V. 11. P. 468. https://doi.org/10.3389/fmicb.2020.00468
  29. Doerfert S.N., Reichlen M., Iyer P., Wang M., Ferry J.G. // Int. J. Syst. Evol. Microbiol. 2009. V. 59. № 5. P. 1064–1069. https://doi.org/10.1099/ijs.0.003772-0
  30. Shih C.J., Lai M.C. // Can. J. Microbiol. 2010. V. 56. № 4. P. 295–307. https://doi.org/10.1139/W10-008
  31. Cheng L., Qiu T.L., Yin X.B., Wu X.L., Hu G.Q., Deng Y., Zhang H. // Int. J. Syst. Evol. Microbiol. 2007. V. 57. № 12. P. 2964–2969. https://doi.org/10.1099/ijs.0.65049-0
  32. Bryukhanov A.L., Vlasov D.Y., Maiorova M.A., Tsarovtseva I.M. // Power Technol. Eng. 2021. V. 54. № 5. P. 609–614. https://doi.org/10.1007/s10749-020-01260-5

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Distribution of key groups of microorganisms (in% of all reads of the 16S rRNA gene sequences) at the order level in the fouling of titanium plates exposed in the coastal zone of the Black (1) and White (2) seas. The groups that include corrosive microorganisms are highlighted in bold.

下载 (334KB)
3. Fig. 2. Fouling of titanium plates after 10 months of exposure: a – surface of titanium before fouling; b – titanium with biofilm, Black Sea; c – titanium with biofilm, White Sea.

下载 (286KB)

版权所有 © Russian Academy of Sciences, 2024