Эффективность передачи данных при атаках с точки зрения варианта изолированной жесткости
- Авторы: Гао В.1, Башконуш Х.М.2, Каттани К.3
- 
							Учреждения: 
							- Юньнаньский нормальный университет
- Университет Харрана
- Университет Тусции
 
- Выпуск: Том 59, № 2 (2023)
- Страницы: 83-101
- Раздел: Статьи
- URL: https://cardiosomatics.ru/0555-2923/article/view/667571
- DOI: https://doi.org/10.31857/S0555292323020067
- EDN: https://elibrary.ru/PQHKAT
- ID: 667571
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
Модель сетевого графа является удобным инструментом для анализа сетей передачи информации, где возможность передачи в условиях атаки на объект можно описывать с помощью дробных критических графов, а уязвимость сети можно измерять с помощью варианта параметра изолированной жесткости. Рассматривается как устойчивость сети, так и реализуемость передачи данных при повреждении узлов, и определяется граница на вариант изолированной жесткости для дробных (a, b, n)-критических графов, где параметр n означает количество поврежденных узлов в определенный момент времени. С помощью контрпримера доказывается точность полученной границы на вариант изолированной жесткости. Основной теоретический вывод позволяет находить оптимальное соотношение между производительностью и стоимостью при проектировании топологии сети.
			                Ключевые слова
Об авторах
Вэй Гао
Юньнаньский нормальный университет
														Email: gaowei@ynnu.edu.cn
				                					                																			                												                								Куньмин, Китай						
Хаджи Мехмет Башконуш
Университет Харрана
														Email: hmbaskonus@gmail.com
				                					                																			                												                								Шанлыурфа, Турция						
Карло Каттани
Университет Тусции
														Email: cattani@unitus.it
				                					                																			                												                								Витербо, Италия						
Список литературы
- Zhou S., Liu H., Xu Y. A Note on Fractional ID-[a, b]-Factor-Critical Covered Graphs // Discrete Appl. Math. 2022. V. 319. P. 511-516. https://doi.org/10.1016/j.dam.2021.03.004
- Zhou S., Wu J., Bian Q. On Path-Factor Critical Deleted (or Covered) Graphs // Aequationes Math. 2022. V. 96. № 4. P. 795-802. https://doi.org/10.1007/s00010-021-00852-4
- Zhou S., Wu J., Liu H. Independence Number and Connectivity for Fractional (a, b, k)-Critical Covered Graphs // RAIRO Oper. Res. 2022. V. 56. № 4. P. 2535-2542. https://doi.org/10.1051/ro/2022119
- Gao W., Wang W. New Isolated Toughness Condition for Fractional (g, f, n)-Critical Graphs // Colloq. Math. 2017. V. 147. P. 55-66. https://doi.org/10.4064/cm6713-8-2016
- Woodall D. The Binding Number of a Graph and Its Anderson Number // J. Combin. Theory Ser. B. 1973. V. 15. № 3. P. 225-255. https://doi.org/10.1016/0095-8956(73)90038-5
- Chvátal V. Tough Graphs and Hamiltonian Circuits // Discrete Math. 1973. V. 5. № 3. P. 215-228. https://doi.org/10.1016/0012-365X(73)90138-6
- Enomoto H. Toughness and the Existence of k-Factors. III // Discrete Math. 1998. V. 189. № 1-3. P. 277-282. https://doi.org/10.1016/S0012-365X(98)00059-4
- Yang J., Ma Y., Liu G. Fractional (g, f)-Factors of Graphs // Appl. Math. J. Chinese Univ. Ser. A (Chinese) 2001. V. 16. № 4. P. 385-390.
- Ma Y., Liu G. Isolated Toughness and the Existence of Fractional Factors // Acta Math. Appl. Sin. (Chinese). 2003. V. 26. № 1. P. 133-140.
- He Z., Liang L., Gao W. Isolated Toughness Variant and Fractional k-Factor // RAIRO Oper. Res. 2022. V. 56. № 5. P. 3675-3688. https://doi.org/10.1051/ro/2022177
- Gao W., Wang W., Zheng L. Fuzzy Fractional Factors in Fuzzy Graphs // Int. J. Intell. Syst. 2022. V. 37. № 11. P. 9886-9903. https://doi.org/10.1002/int.23019
- Gao W., Wang W., Chen Y. Tight Isolated Toughness Bound for Fractional (k, n)-Critical Graphs // Discrete Appl. Math. 2022. V. 322. P. 194-202. https://doi.org/10.1016/j.dam.2022.08.028
- Zhou S. A Neighborhood Union Condition for Fractional (a, b, k)-Critical Covered Graphs // Discrete Appl. Math. 2022. V. 323. P. 343-348. https://doi.org/10.1016/j.dam.2021.05.022
- Zhang W., Wang S. Discussion on Fractional (a, b, k)-Critical Covered Graphs // Acta Math. Appl. Sin. Engl. Ser. 2022. V. 38. № 2. P. 304-311. https://doi.org/10.1007/s10255-022-1076-6
- Gao W., Wang W., Chen Y. Isolated Toughness and Fractional (a, b, n)-Critical Graphs // Connect. Sci. 2023. V. 35. № 1. Article 2181482 (15 pp.). https://doi.org/10.1080/09540091.2023.2181482
- Bondy J.A., Mutry U.S.R. Graph Theory. Berlin: Springer, 2008.
- Liu S. On Toughness and Fractional (g, f, n)-Critical Graphs // Inform. Process Lett. 2010. V. 110. № 10. P. 378-382. https://doi.org/10.1016/j.ipl.2010.03.005
Дополнительные файлы
 
				
			 
						 
						 
						 
					 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 

