Нейрофизиологические корреляты формирования эстетического суждения в условиях совместного просмотра произведений живописи

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Статья посвящена исследованию нейрофизиологических коррелятов восприятия произведений живописи в условиях сознательного (имплицитного) формирования своего оценочного мнения о них. Участники исследования (24 человека, 18–63 года, медиана возраста 22.5 лет, 6 мужчин, 18 женщин) в парах рассматривали картины на выставке, выбранные каждым из участников в паре, и делились своим мнением относительно рассмотренных картин. Для каждого участника сравнивались спектральные мощности ЭЭГ в состояниях «просмотра собственного выбора – понравившейся картины» и «просмотра картины, понравившейся и выбранной партнером». По данным спектрального анализа ЭЭГ группа испытуемых может быть разделена на 2 подгруппы, между которыми нет различий при просмотре самостоятельно выбранной картины, но наблюдается различная реакция при просмотре картины, выбранной партнером. В первой подгруппе (14 человек) меньшие значения мощности характерны для восприятия собственной выбранной картины (в тета- (4–8 Гц), альфа-1 (8–10 Гц) и альфа-2- (10–13 Гц) диапазонах ЭЭГ), в то время как во второй подгруппе (9 человек) наблюдаются меньшие значения мощности при просмотре картины, выбранной партнером (в дельта- (1.6–4 Гц), тета- (4–8 Гц), бета-1- (13–18 Гц) и бета-2- (13–30 Гц) диапазонах ЭЭГ). Можно предположить различие стратегий оценки произведения, выбранного другим человеком.

Полный текст

Доступ закрыт

Об авторах

Ж. В. Нагорнова

Институт эволюционной физиологии и биохимии им. И.М. Сеченова РАН

Автор, ответственный за переписку.
Email: nagornova_zh@mail.ru
Россия, Санкт-Петербург

Н. В. Шемякина

Институт эволюционной физиологии и биохимии им. И.М. Сеченова РАН

Email: shemyakina_n@mail.ru
Россия, Санкт-Петербург

Список литературы

  1. Endevelt-Shapira Y, Feldman R (2023) Mother-Infant Brain-to-Brain Synchrony Patterns Reflect Caregiving Profiles. Biology (Basel) 12: 284. https://doi.org/10.3390/biology12020284
  2. Marzoratti A, Liu ME, Krol KM, Sjobeck GR, Lipscomb DJ, Hofkens TL, Boker SM, Pelphrey KA, Connelly JJ, Evans TM (2023) Epigenetic modification of the oxytocin receptor gene is associated with child-parent neural synchrony during competition. Dev Cogn Neurosci 63: 101302. https://doi.org/10.1016/j.dcn.2023.101302
  3. Kang K, Orlandi S, Leung J, Akter M, Lorenzen N, Chau T, Thaut MH (2023) Electroencephalographic interbrain synchronization in children with disabilities, their parents, and neurologic music therapists. Eur J Neurosci 58: 2367–2383. https://doi.org/10.1111/ejn.16036.
  4. Liu J, Zhang R, Geng B, Zhang T, Yuan D, Otani S, Li X (2019) Interplay between prior knowledge and communication mode on teaching effectiveness: Interpersonal neural synchronization as a neural marker. Neuroimage 193: 93–102. https://doi.org/10.1016/j.neuroimage.2019.03.004
  5. Balconi M, Angioletti L, Cassioli F (2023) Electrophysiology and hyperscanning applied to e-learning for organizational training. Learn Organizat 30: 857–876. https://doi.org/10.1108/TLO-01-2023-0011
  6. Pérez A, Carreiras M, Duñabeitia JA (2017) Brain-to-brain entrainment: EEG interbrain synchronization while speaking and listening. Sci Rep 7: 4190. https://doi.org/10.1038/s41598-017-04464-4
  7. Ahn S, Cho H, Kwon M, Kim K, Kwon H, Kim BS, Chang WS, Chang JW, Jun SC (2018) Interbrain phase synchronization during turn-taking verbal interaction-a hyperscanning study using simultaneous EEG/MEG. Hum Brain Mapp 39: 171–188. https://doi.org/10.1002/hbm.23834
  8. Shemyakina NV, Nagornova ZV (2021) Neurophysiological Characteristics of Competition in Skills and Cooperation in Creativity Task Performance: A Review of Hyperscanning Research. Hum Physiol 47: 87–103. https://doi.org/10.1134/S0362119721010126
  9. Deng X, Lin M, Zhang L, Li X, Gao Q (2022) Relations between family cohesion and adolescent-parent's neural synchrony in response to emotional stimulations. Behav Brain Funct 18: 11. https://doi.org/10.1186/s12993-022-00197-1
  10. Cha K-M, Lee H-C (2019) A novel qEEG measure of teamwork for human error analysis: An EEG hyperscanning study. Nuclear Engineer and Technol 51: 683–691. https://doi.org/10.1016/j.net.2018.11.009
  11. Xie E, Yin Q, Li K, Nastase SA, Zhang R, Wang N, Li X (2021) Sharing Happy Stories Increases Interpersonal Closeness: Interpersonal Brain Synchronization as a Neural Indicator. eNeuro. 8: ENEURO.0245-21.2021. https://doi.org/10.1523/ENEURO.0245-21.2021
  12. Cheng X, Wang S, Guo B, Wang Q, Hu Y, Pan Y (2024) How self-disclosure of negative experiences shapes prosociality? Soc Cogn Affect Neurosci 19: nsae003. https://doi.org/10.1093/scan/nsae003
  13. Opris I, Bruce CJ (2005) Neural circuitry of judgment and decision mechanisms. Brain Res Brain Res Rev 48: 509–526. https://doi.org/10.1016/j.brainresrev.2004.11.001
  14. Chatterjee A, Vartanian O (2016) Neuroscience of aesthetics. Ann N Y Acad Sci 1369: 172–194. https://doi.org/10.1111/nyas.13035
  15. Cupchik GC, Vartanian O, Crawley A, Mikulis DJ (2009) Viewing artworks: Contributions of cognitive control and perceptual facilitation to aesthetic experience. Brain Cogn 70: 84–91. https://doi.org/10.1016/j.bandc.2009.01.003
  16. Belfi AM, Vessel EA, Brielmann A, Isik AI, Chatterjee A, Leder H, Pelli DG, Starr GG (2019) Dynamics of aesthetic experience are reflected in the default-mode network. Neuroimage 188: 584–597. https://doi.org/10.1016/j.neuroimage.2018.12.017
  17. Smith JK, Smith LF (2001) Spending time on art. Empir Stud Arts 19: 229–236.
  18. Brieber D, Nadal M, Leder H, Rosenberg R (2014) Art in time and space: Context modulates the relation between art experience and viewing time. PLoS One 9: e99019. https://doi.org/10.1371/journal.pone.0099019
  19. Amabile TM (1982) Social psychology of creativity: A consensual assessment technique. J Personal Soc Psychol 43: 997–1013. https://doi.org/10.1037/0022-3514.43.5.997
  20. Niu W, Sternberg RJ (2001) Cultural influences on artistic creativity and its evaluation. International J Psychol 36: 225–241. https://doi.org/10.1080/00207590143000036
  21. Yi X, Plucker JA, Guo J (2015) Modeling influences on divergent thinking and artistic creativity. Thinking Skills Creativ 16: 62–68. https://doi.org/10.1016/j.tsc.2015.02.002
  22. Vigario RN (1997) Extraction of ocular artefacts from EEG using independent component analysis. Electroencephal Clin Neurophysiol 103: 395–404. https://doi.org/10.1016/S0013-4694(97)00042-8
  23. Jung TP, Makeig S, Westerfield M, Townsend J, Courchesne E, Sejnowski TJ (2000) Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects. Clin Neurophysiol 111: 1745–1758. https://doi.org/10.1016/s1388-2457(00)00386-2
  24. Tereshchenko EP, Ponomarev VA, Kropotov YuD, Müller A (2009) Comparative efficiencies of different methods for removing blink artifacts in analyzing quantitative electroencephalogram and event-related potentials. Hum Physiol 35: 241–247. https://doi.org/10.1134/S0362119709020157
  25. Bendat JC, Piersol AG (1986) Random Data: Analysis and Measurement Procedures. 2nd ed. Wiley-Interscience. New York. USA.
  26. Gevins AS, Remond A (Eds) (1987) Handbook of Electroencephalography and Clinical Neurophysiology: Methods of Analysis of Brain and Magnetic Signals. Elsevier. Amsterdam. The Netherlands.
  27. Bulley MH, Burt CL (1933) Have you good taste? A guide to the appreciation of the lesser arts. Methuen and Co, Ltd.
  28. Burt C (1960) The general aesthetic factor. III. Br J Statist Psychol 13: 90–92. https://doi.org/10.1111/j.2044-8317.1960.tb00044.x
  29. Clemente A (2023) Aesthetic sensitivity: Origin and development. In: The Routledge Int Handbook of Neuroaesthetics. Skov M, Nadal M (eds) 240–253. Routledge. https://doi.org/ 10.4324/9781003008675-13
  30. Pelowski M (2015) Tears and transformation: Feeling like crying as an indicator of insightful or “aesthetic” experience with art. Front Psychol 6: 1006. https://doi.org/10.3389/fpsyg.2015.01006
  31. Piff PK, Dietze P, Feinberg M, Stancato DM, Keltner D (2015) Awe, the small self, and prosocial behavior. J Person Soc Psychol 108: 883–899. https://doi.org/10.1037/pspi0000018
  32. Beudt S, Jacobsen T (2015) On the Role of Mentalizing Processes in Aesthetic Appreciation: An ERP Study. Front Hum Neurosci 2015 9: 600. https://doi.org/10.3389/fnhum.2015.00600
  33. Dasari D, Shou G, Ding L (2017) ICA-Derived EEG Correlates to Mental Fatigue, Effort, and Workload in a Realistically Simulated Air Traffic Control Task. Front Neurosci 11: 297. https://doi.org/10.3389/fnins.2017.00297
  34. Brüne M, Brüne-Cohrs U (2006) Theory of mind-evolution, ontogeny, brain mechanisms and psychopathology. Neurosci Biobehav Rev 30: 437–455. https://doi.org/10.1016/j.neubiorev.2005.08.001
  35. Poulin-Dubois D (2020) Theory of mind development: State of the science and future directions. Prog Brain Res 254: 141–166. https://doi.org/10.1016/bs.pbr.2020.05.021
  36. Desai RH, Reilly M, van Dam W (2018) The multifaceted abstract brain. Philos Trans R Soc Lond B Biol Sci 373: 20170122. https://doi.org/10.1098/rstb.2017.0122
  37. Schurz M, Radua J, Aichhorn M, Richlan F, Perner J (2014) Fractionating theory of mind: A meta-analysis of functional brain imaging studies. Neurosci Biobehav Rev 42: 9–34. https://doi.org/10.1016/j.neubiorev.2014.01.009
  38. McCleery JP, Surtees AD, Graham KA, Richards JE, Apperly IA (2011) The neural and cognitive time course of theory of mind. J Neurosci 31:12849–12854. https://doi.org/10.1523/JNEUROSCI.1392-11.2011
  39. Bradford EEF, Gomez JC, Jentzsch I (2019) Exploring the role of self/other perspective-shifting in theory of mind with behavioural and EEG measures. Soc Neurosci 14: 530–544. https://doi.org/10.1080/17470919.2018.1514324
  40. Bowman AD, Griffis JC, Visscher KM, Dobbins AC, Gawne TJ, DiFrancesco MW, Szaflarski JP (2017) Relationship Between Alpha Rhythm and the Default Mode Network: An EEG-fMRI Study. J Clin Neurophysiol 34: 527–533. https://doi.org/10.1097/WNP.0000000000000411
  41. Knyazev GG, Savostyanov AN, Bocharov AV, Dorosheva EA, Tamozhnikov SS, Saprigyn AE (2015) Oscillatory correlates of autobiographical memory. Int J Psychophysiol 95: 322–332. https://doi.org/10.1016/j.ijpsycho.2014.12.006
  42. Compton RJ, Shudrenko D, Mann K, Turdukulov E, Ng E, Miller L (2024) Effects of task context on EEG correlates of mind-wandering. Cogn Affect Behav Neurosci 24: 72–86. https://doi.org/10.3758/s13415-023-01138-9
  43. Shemyakina NV, Potapov YG (2023) Development of Methodology for Investigation of Artists’ Creativity and Studying the Neurophysiological Characteristics of Visual Creativity in Ecological Conditions of Artistic Studio (Review and Methodology). Hum Physiol 49 (Suppl 1): S147–S166. https://doi.org/10.1134/S0362119723600480
  44. Kowatari Y, Lee SH, Yamamura H, Nagamori Y, Levy P, Yamane S, Yamamoto M (2009) Neural networks involved in artistic creativity. Hum Brain Mapp 30: 1678–1690. https://doi.org/10.1002/hbm.20633
  45. Olszewska AM, Gaca M, Droździel D, Widlarz A, Herman AM, Marchewka A (2024) Understanding functional brain reorganization for naturalistic piano playing in novice pianists. J Neurosci Res 102: e25312. https://doi.org/10.1002/jnr.25312
  46. Poikonen H, Tervaniemi M, Trainor L (2024) Cortical oscillations are modified by expertise in dance and music: Evidence from live dance audience. Eur J Neurosci (8): 6000–6014. https://doi.org/10.1111/ejn.16525
  47. Шемякина НВ, Нагорнова ЖВ, Грохотова АВ, Галкин ВА, Васенькина ВА, Бирюкова СВ, Потапов ЮГ (2024) Изучение ЭЭГ-характеристик эстетического восприятия и оценки произведений живописи в условиях посещения музея. Нейроэстетическое исследование. Физиол человека 50: 32–48. [Shemyakina NV, Nagornova ZhV, Grokhotova АV, Galkin VA, Vasen’kina VA, Biryukova SV, Potapov YG (2024) EEG-Characteristics of Aesthetic Perception and Evaluation of Artworks During a Museum Visit: А Neuroaesthetic Study. Fiziol chel 50: 32–48. (In Russ)]. https://doi.org/10.31857/S0131164624040031
  48. Klimesch W (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Res Brain Res Rev 29: 169–195. https://doi.org/10.1016/s0165-0173(98)00056-3
  49. Babiloni F, Cherubino P, Graziani I, Trettel A, Infarinato F, Picconi D, Borghini G, Maglione AG, Mattia D, Vecchiato G (2013) Neuroelectric brain imaging during a real visit of a fine arts gallery: A neuroaesthetic study of XVII century Dutch painters. Annu Int Conf IEEE Eng Med Biol Soc 2013: 6179–6182. https://doi.org/10.1109/EMBC.2013.6610964
  50. Bazanova OM, Kondratenko AV, Kuzminova OI, Muravlyova KB, Petrova SE (2014) EEG alpha indices depending on the menstrual cycle phase and salivary progesterone level. Hum Physiol 40: 140–148. https://doi.org/10.1134/S0362119714020030
  51. Bazanova OM, Kuzminova OI, Nikolenko ED, Petrova SE (2014) EEG activation response under different neurohumoral states. Hum Physiol 40: 375–382. https://doi.org/10.1134/S0362119714040045
  52. Danko SG, Bechtereva NP, Shemyakina NV, Antonova LV (2003) Electroencephalographic Correlates of Mental Performance of Emotional Personal and Scenic Situations: I. Characteristics of Local Synchronization. Hum Physiol 29: 263–272. https://doi.org/10.1023/A:1023978019063
  53. Shemyakina NV, Dan’ko SG (2007) Changes in the power and coherence of the β2 EEG band in subjects performing creative tasks using emotionally significant and emotionally neutral words. Hum Physiol 33: 20–26. https://doi.org/10.1134/S0362119707010033

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Схема исследования.

Скачать (89KB)
3. Рис. 2. Спектры мощности ЭЭГ в дельта- (a) и тета- (b) диапазонах ЭЭГ при просмотре картины, выбранной самостоятельно (Свой выбор), и картины, выбранной партнером (Выбор партнера). Примечание. На гистограммах – нормализованная мощность (Log10) в исследованных состояниях (среднее и ошибка среднего), римскими цифрами обозначены значимые различия. На разностных топограммах представлены пространственные различия для обозначенных парных сравнений (мкВ2).

Скачать (252KB)
4. Рис. 3. Спектры мощности ЭЭГ в альфа-1- (a) и альфа-2- (b) диапазонах ЭЭГ при просмотре картины, выбранной самостоятельно (Свой выбор), и картины, выбранной партнером (Выбор партнера). Примечание. На гистограммах – нормализованная мощность (Log10) в исследованных состояниях (среднее и ошибка среднего), римскими цифрами обозначены значимые различия. На разностных топограммах представлены пространственные различия для обозначенных парных сравнений (мкВ2).

Скачать (310KB)
5. Рис. 4. Спектры мощности ЭЭГ в бета-1- (a) и бета-2- (b) диапазонах ЭЭГ при просмотре картины, выбранной самостоятельно (Свой выбор), и картины, выбранной партнером (Выбор партнера). Примечание. На гистограммах – нормализованная мощность (Lg(P)) в исследованных состояниях (среднее и ошибка среднего), римскими цифрами обозначены значимые различия. На разностных топограммах представлены пространственные различия для обозначенных парных сравнений (мкВ2).

Скачать (222KB)

© Российская академия наук, 2025