Modeling of the process of hot isostatic pressing of single crystals of nickel-based superalloy, taking into account plastic flow and vacancy diffusion
- Autores: Epishin А.I.1, Lisovenko D.S.2
- 
							Afiliações: 
							- Merzhanov Institute of Structural Macrokinetics and Materials Science of the RAS
- Ishlinsky Institute for Problems in Mechanics of the RAS
 
- Edição: Nº 3 (2025)
- Páginas: 38-58
- Seção: Articles
- URL: https://cardiosomatics.ru/1026-3519/article/view/687409
- DOI: https://doi.org/10.31857/S1026351925030032
- EDN: https://elibrary.ru/AZGETQ
- ID: 687409
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
A complex model of pore annihilation during hot isostatic pressing (HIP), which takes into account the simultaneous action of the mechanisms of material plastic flow and diffusive pore dissolution due to the emission of vacancies by the pore surface, has been proposed. The obtained mathematical equations are applied to analyze the kinetics of pore annihilation in single crystals of the nickel-based superalloy CMSX-4 during HIP used for this alloy in industry. It follows from the analysis that both mechanisms (plastic flow and vacancy diffusion) make comparable contributions to the reduction of pore volume under these conditions. As the HIP pressure increases, the contribution of plastic flow increases, while the contribution of vacancy diffusion decreases. Large pores shrink in volume mainly due to the mechanism of plastic flow, however, at the final stage of pore closure, the mechanism of vacancy diffusion is more active. To ensure reliable pore healing by the vacancy mechanism, HIP should be carried out at a moderate argon pressure in the HIP plant.
Texto integral
 
												
	                        Sobre autores
А. Epishin
Merzhanov Institute of Structural Macrokinetics and Materials Science of the RAS
														Email: a.epishin2021@gmail.com
				                					                																			                												                	Rússia, 							Chernogolovka						
D. Lisovenko
Ishlinsky Institute for Problems in Mechanics of the RAS
							Autor responsável pela correspondência
							Email: lisovenk@ipmnet.ru
				                					                																			                												                	Rússia, 							Moscow						
Bibliografia
- Shalin R.E., Svetlov I.L., Kachanov E.B., Toloraia V.N., Gavrilin O.S. Single crystals of nickel-based superalloys. Moscow: Mashonostroeniye. 1997. 333 p. [in Russian].
- Reed R.C. The Superalloys: Fundamentals and applications. Cambridge: Cambridge University Press, 2006. 372 p. https://doi.org/10.1017/CBO9780511541285
- Epishin A., Link T., Bruckner U., Portella P.D. Investigation of porosity in single-crystal nickel-base superalloys // Proc. the 7th Liege Conference on Materials for Advanced Power Engineering. FZ Jülich, 2002. P. 217–226.
- Link T., Zabler S., Epishin A. et.al. Synchrotron tomography of porosity in single-crystal nickel-base superalloys // Mat. Sci. Eng. A. 2006. V. 425. P. 47–54. https://doi.org/10.1016/j.msea.2006.03.005
- Epishin A., Link T., Svetlov I.L. et.al. Mechanism of porosity growth during homogenisation in single crystal nickel-based superalloys // Int. J. Mater. Res. 2013. V. 104. P. 776–782. https://doi.org/10.3139/146.110924
- Lecomte-Beckers J. Study of microporosity formation in nickel-base superalloys // Metall. Trans. A. 1988. V. 19. № 9. P. 2341–2348. https://doi.org/10.1007/BF02645058
- Anton D.L., Giamei A.F. Porosity distribution and growth during homogenization in single crystals of a Nickel-base superalloy // Mater. Sci. Eng. 1985. V. 76. P. 173–180. https://doi.org/10.1016/0025-5416(85)90091-6
- Toloraya V.N., Zuev A.G., Svetlov I.L. Effect of conditions of directed solidification and heat treatment on porosity in creep resistant nickel alloy single crystals // Izv. Akad. Nauk SSSR. Metally. 1991. № 5. P. 70–76.
- Fullagar K.P.L., Broomfield R.W., Hulands M. et al. Aero engine test experience with CMSX-4® alloy single-crystal turbine blades // J. Eng. Gas Turbines Power. 1996. V. 118. P. 380–388. https://doi.org/10.1115/1.2816600
- Epishin A.I., Link T., Fedelich B. et al. Hot isostatic pressing of single-crystal Ni-base superalloys: mechanism of pore closure and effect on mechanical properties // MATEC Web of Conferences. 2014. V. 14. P. 08003. https://doi.org/10.1051/matecconf/20141408003
- Reed R.C., Cox D.C., Rae C.M.F. Damage accumulation during creep deformation of a single crystal superalloy at 1150 °C // Mater. Sci. Eng. A. 2007. V. 448. № 1–2. P. 88–96. https://doi.org/10.1016/j.msea.2006.11.101
- Epishin A., Fedelich B., Link T. et al. Pore annihilation in a single-crystal nickel-base superalloy during hot isostatic pressing: Experiment and modelling // Mat. Sci. Eng. A. 2013. V. 586. P. 342–349. https://doi.org/10.1016/j.msea.2013.08.034
- Epishin A.I., Bokstein B.S., Svetlov I.L. et al. A vacancy model of pore annihilation during hot isostatic pressing of single crystals of nickel-base superalloys // Inorg. Mater. Appl. Res. 2018. V. 9. P. 57–65. https://doi.org/10.1134/S2075113318010100
- Epishin A.I., Lisovenko D.S., Alymov M.I. A model of diffusion annihilation of gas-filled spherical pores during hot isostatic pressing // Mech. Solids. 2025. V. 60. № 1. P. 136–157. http://doi.org/10.1134/S0025654424604981
- Čadek J. The back stress concept in power law creep of metals: A review // Mater. Sci. Eng. 1987. V. 94. P. 79–92. https://doi.org/10.1016/0025-5416(87)90324-7
- Epishin A., Fedelich B., Nolze G. et al. Creep of single crystals of nickel-based superalloys at ultra-high homologous temperature // Metall. Mater. Trans. A. 2018. V. 49. P. 3973–3987. https://doi.org/10.1007/s11661-018-4729-6
- Epishin A.I., Fedelich B., Viguier B. et al. Creep of single-crystals of nickel-base γ-alloy at temperatures between 1150 °C and 1288 °C // Mater. Sci. Eng. A. 2021. V. 825. P. 141880. https://doi.org/10.1016/j.msea.2021.141880
- Epishin A., Camin B., Hansen L. et. al. Refinement and experimental validation of a vacancy model of pore annihilation in single-crystal nickel-base superalloys during hot isostatic pressing // Adv. Eng. Mater. 2020. V. 23. № 7. P. 2100211. https://doi.org/10.2139/ssrn.3751560
- Klingelhöffer H., Epishin A., Link T. Low cycle fatigue of the single-crystal nickel-base superalloy CMSX-4 - Anistropy and effect of creep damage // Mater. Testing. 2009. V. 51. № 5. P. 291–294. https://doi.org/10.3139/120.110035
- Epishin A.I., Alymov M.I. Deformation and fracture of single crystals of nickel-base superalloys CMSX-4 and CMSX-10 under conditions of creep and fatigue loading // Russian Metallurgy (Metally). 2023. V. 2023. № 4. P. 460–465. https://doi.org/10.1134/S0036029523040079
- Epishin A.I., Nolze G., Alymov M.I. Pore morphology in single crystals of a nickel-based superalloy after hot isostatic pressing // Metall. Mater. Trans. A. 2023. V. 54. P. 371–379. https://doi.org/10.1007/s11661-022-06893-x
- Orlov M.A. Technological maintenance of the service life of the working blades of the first turbine stages of aircraft and ground-based gas turbine engines. Diss. for the degree of Doctor of Technical Sciences. Moscow, 2008. 207 p.
- Epishin A., Link T., Portella P.D., Brückner U. Evolution of the γ/γ′ microstructure during high-temperature creep of a nickel-base superalloy // Acta Mater. 2000. V. 48. № 16. P. 4169–4177. https://doi.org/10.1016/S1359-6454(00)00197-X
- Wilkinson D.S, Ashby M.F Pressure sintering by power law creep // Acta Metallurgica. 1975. V. 23. № 11. P. 1277–1285. https://doi.org/10.1016/0001-6160(75)90136-4
Arquivos suplementares
 
				
			 
						 
						 
						 
						 
					 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 








