Dexamethasone reduces cytokine mRNA levels and microglial activity in the brainstem of newborn rats
- Autores: Kalinina T.S.1,2, Bulygina V.V.1, Lanshakov D.А.1,2, Sukhareva E.V.1, Dygalo N.N.1,2
- 
							Afiliações: 
							- Federal research center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
- Novosibirsk State University
 
- Edição: Volume 41, Nº 3 (2024)
- Páginas: 240-246
- Seção: Experimental Articles
- URL: https://cardiosomatics.ru/1027-8133/article/view/653888
- DOI: https://doi.org/10.31857/S1027813324030039
- EDN: https://elibrary.ru/EQUVXL
- ID: 653888
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
During the perinatal period of ontogenesis microglia, take part functions as a critical key-regulator of the angio-, neuro- and synaptogenesis processes. Under normal development, without inflammation induction, administration of the glucocorticoid hormone dexamethasone (0.2 mg/kg) caused a rapid decrease in the mRNA levels of both pro- and anti-inflammatory cytokines in the brainstem of neonatal rat pups. A decrease in the expression of the Il1b, Tnfa genes was observed within 1 hour, and Il10, Tgfb1 4 hours after the administration of the hormone to 3-day-old rat pups. Suppression of cytokine mRNA levels was accompanied by a decrease in the number of cells expressing the microglia marker protein IBA1 in the locus coeruleus region of the brain stem in 6 hours after glucocorticoid administration. The identified features of the dexamethasone action can weaken the participation of microglia in the processes of neuroplasticity in the developing brain, which may be one of the reasons for long-term changes in brain functioning.
Palavras-chave
Texto integral
 
												
	                        Sobre autores
T. Kalinina
Federal research center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
							Autor responsável pela correspondência
							Email: kalin@bionet.nsc.ru
				                					                																			                												                	Rússia, 							Novosibirsk; Novosibirsk						
V. Bulygina
Federal research center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
														Email: kalin@bionet.nsc.ru
				                					                																			                												                	Rússia, 							Novosibirsk						
D. Lanshakov
Federal research center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
														Email: kalin@bionet.nsc.ru
				                					                																			                												                	Rússia, 							Novosibirsk; Novosibirsk						
E. Sukhareva
Federal research center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
														Email: kalin@bionet.nsc.ru
				                					                																			                												                	Rússia, 							Novosibirsk						
N. Dygalo
Federal research center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
														Email: kalin@bionet.nsc.ru
				                					                																			                												                	Rússia, 							Novosibirsk; Novosibirsk						
Bibliografia
- Sapolsky R.M., Romero L.M., Munck A.U. // Endocr. Rev. 2000. V. 21. P. 55–89.
- Sorrells S.F., Sapolsky R.M. // Brain Behav. Immun. 2007. V. 21. P. 259–272.
- Manuela Z., Julien P., Elodie B., Olivier B., Jérôme M. // Curr Neuropharmacol. 2021. V. 19. P. 2188–2204.
- Sarid E.B., Stoopler M.L., Morency A.M., Garfinkle J. // Pediatr. Res. 2022. V. 92. P. 1225–1239.
- Melan N., Pradat P., Godbert I., Pastor-Diez B., Basson E., Picaud J.C. // Eur. J. Pediatr. 2024. V. 183. P. 677–687.
- Zheng B., Zheng Y., Hu W., Chen Z. //Arch. Toxicol. 2024. V. 98. P. 1975–1990. doi: 10.1007/s00204-024-03733-2. Epub 2024 Apr 6. PMID: 38581585.
- Тишкина А.О., Степаничев М.Ю., Аниол В.А., Гуляева Н.В. // Успехи физиологических наук. 2014. Т. 45. №4. С. 3–18.
- Thion M.S., Ginhoux F., Garel S. // Science. 2018. V. 362. P. 185–189.
- Zengeler K.E., Lukens J.R. // Trends in Immunology. – 2024.
- Bilbo S.D., Smith S.H., Schwarz J.M. // J. Neuroimmune Pharmacol. 2012. V. 7. P. 24–41.
- Bilbo S.D., Block C.L., Bolton J.L., Hanamsagar R., Tran P.K. // Exp. Neurol. 2018. V. 299. P. 241–251.
- Walker D.J., Spencer K.A. // Gen. Comp. Endocrinol. 2018. V. 256. P. 80–88.
- Wang H., He Y., Sun Z., Ren S., Liu M., Wang G., Yang J. // J Neuroinflammation. 2022. V. 19. P. 132.
- Shishkina G.T., Kalinina T.S., Dygalo N.N. // Neuroscience. 2004. V. 129. P. 521–528.
- Kalinina T.S., Shishkina G.T., Dygalo N.N. // Neurochem. Res. 2012. V. 37. P. 811–818.
- Lanshakov D.A., Sukhareva E.V., Kalinina T.S., Dygalo N.N. // Neurobiol. Dis. 2016. V. 91. P. 1–9.
- Дыгало Н.Н., Науменко Е.В. //Докл. АН СССР. Сер. биол. 1983. Т. 271. № 4. С. 1003.
- Дыгало Н.Н., Юдин Н.С., Калинина Т.С., Науменко Е.В. // Онтогенетические и генетико-эволюционные аспекты нейроэндокринной регуляции стресса. Новосибирск: Наука. 1990. С. 136–148.
- Kreider M.L., Tate C.A., Cousins M.M., Oliver C.A., Seidler F.J., Slotkin T.A. // Neuropsychopharmacology. 2006. V. 31. P. 12–35.
- Slotkin T.A., Ko A., Seidler F.J. // Toxicology. 2018. V. 408. P. 11–21.
- Tsiarli M.A., Rudine A., Kendall N., Pratt M.O., Krall R., Thiels E., DeFranco D.B., Monaghan A.P. // Transl. Psychiatry. 2017. V. 7. e1153
- O’Donnell K.J., Meaney M.J. // Am. J. Psychiatry. 2017. V. 174. P. 319–328. doi: 10.1176/appi.ajp.2016.16020138. Epub 2016 Nov 14. PMID: 27838934.
- Scheinost D., Sinha R., Cross S.N., Kwon S.H., Sze G., Constable R.T., Ment L.R. // Pediatr. Res. 2017. V. 81. P. 214–226.
- Meyer J.S. // Physiol. Rev. 1985. V. 65. P. 946–1020.
- Park K.W., Lee H.G., Jin B.K., Lee Y.B. // Exp. Mol. Med. 2007. V. 39. P. 812–819.
- Bedolla A., Wegman E., Weed M., Paranjpe A., Alkhimovitch A., Ifergan I., McClain L., Luo Y. // bioRxiv [Preprint]. 2023. 2023.07.05.547814.
- Spittau B., Dokalis N., Prinz M. //Trends Immunol. 2020. V. 41. P. 836–848.
- Butovsky O., Jedrychowski M.P., Moore C.S., Cialic R., Lanser A.J., Gabriely G., Koeglsperger T., Dake B., Wu P.M., Doykan C.E., Fanek Z., Liu L., Chen Z., Rothstein J.D., Ransohoff R.M., Gygi S.P., Antel J.P., Weiner H.L. // Nat. Neurosci. 2014. V. 17. P. 131–143.
- Hui B., Yao X., Zhang L., Zhou Q. // Naunyn Schmiedebergs Arch. Pharmacol. 2020. V. 393. P. 1761–1768.
- Shishkina G.T., Kalinina T.S., Popova N.K., Dygalo N.N. // Behav. Neurosci. 2004. V. 118. P. 1285–1292.
- Dygalo N.N., Kalinina T.S., Shishkina G.T. // Ann. N. Y. Acad. Sci. 2008. V. 1148. P. 409–414.
- Sukhareva E.V., Kalinina T.S., Bulygina V.V., Dygalo N.N. // Russian Journal of Genetics: Applied Research. 2017. V. 7. P. 226–234.
- Kalinina T.S., Sukhareva E.V., Bulygina V.V., Lanshakov D.A., Egorova K.V., Dygalo N.N. // European Neuropsychopharmacology. 2019. V. 29. P. S166–S167.
- Liu Y.U., Ying Y., Li Y., Eyo U.B., Chen T., Zheng J., Umpierre A.D., Zhu J., Bosco D.B., Dong H., Wu L.J. // Nat. Neurosci. 2019. V. 22. P. 1771–1781.
- Mercan D., Heneka M.T. // Nat. Neurosci. 2019. V. 22. P. 1745–1746.
- Stowell R.D., Sipe G.O., Dawes R.P., Batchelor H.N., Lordy K.A., Whitelaw B.S., Stoessel M.B., Bidlack J.M., Brown E., Sur M., Majewska A.K. // Nat. Neurosci. 2019. V. 22. P. 1782–1792.
- Zou H.L., Li J., Zhou J.L., Yi X., Cao S. // Ibrain. 2021. V. 7. P. 309–317.
- Cronk J.C., Kipnis J. // F1000Prime Rep. 2013. V. 5. P. 53.
- Barry-Carroll L., Gomez-Nicola D. // Nat. Rev. Neurosci. 2024. V. 25. P. 414–427.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 



