DOI: https://doi.org/10.17816/CS631331

Оценка взаимосвязи между содержанием витамина D и липидным профилем при заболеваниях щитовидной железы: сравнительный анализ данных пациентов с гипотиреозом, гипертиреозом и здоровых добровольцев

Awat Hamad Awla¹, Badinan Jalal Hamadamin¹, Sleman Yousif Omar¹, Wafa Ahmed Hamadameen²

RNJATOHHA

Обоснование. Заболевания щитовидной железы, включая гипертиреоз и гипотиреоз, широко распространены во всем мире и наблюдаются у миллионов людей. Гормоны щитовидной железы и витамин D участвуют в регуляции обмена липидов, поддерживают функционирование клеток за счет воздействия на рецепторы стероидов и могут влиять на эффекты друг друга через схожие механизмы работы генов.

Цель исследования — сравненить показатели липидограммы и содержание витамина D у пациентов с заболеваниями щитовидной железы и здоровых добровольцев.

Материалы и методы. Данное одномоментное описательное исследование включало 225 участников: 76 пациентов с гипертиреозом, 75 пациентов с гипотиреозом и 74 здоровых добровольца. В образцах сыворотки крови определяли концентрации тиреотропного гормона (ТТГ), свободного трийодтиронина (Т3), свободного тироксина (Т4), показатели липидограммы и содержание 25-гидроксивитамина D.

Результаты. По сравнению со здоровыми добровольцами и пациентами с гипертиреозом у участников с гипотиреозом отмечалось статистически значимое повышение ИМТ ($24,16\pm3,62\ \text{кг/m}^2;\ p<0,001$), а также средних концентраций ТТГ ($26,29\pm14,89\ \text{мМЕ/л};\ p<0,001$), общего холестерина (ОХС; $220,23\pm26,41\ \text{мг/дл};\ p<0,001$), триглицеридов (ТГ; $134,53\pm21,37\ \text{мг/дл};\ p<0,001$), липопротечнов низкой плотности (ЛПОНП; $26,90\pm4,27\ \text{мг/дл};\ p<0,001$) и холестерина, не относящегося к фракции ЛПВП (ХС-не-ЛПВП; $157,50\pm29,63\ \text{мг/дл};\ p=0,032$). Кроме того, у пациентов с гипотиреозом средние концентрации свободного ТЗ ($0,535\pm0,71\ \text{нг/мл};\ p<0,001$) и свободного Т4 ($10,95\pm6,41\ \text{пмоль/л};\ p<0,001$) были статистически значимо ниже. Содержание витамина D в сыворотке крови участников с гипотиреозом ($25,30\pm13,69\ \text{нг/мл};\ p=0,035$) было ниже, чем у здоровых добровольцев ($29,43\pm16,37\ \text{нг/мл}$), но выше, чем у пациентов с гипертиреозом ($23,02\pm15,55\ \text{нг/мл}$). У большинства (60%) участников с гипотиреозом отмечался дефицит витамина D ($<20\ \text{нг/мл};\ p<0,001$). Концентрация ТТГ характеризовалась статистически значимой положительной корреляцией с показателями липидограммы (p<0,05), за исключением холестерина липопротеинов высокой плотности (ХС-ЛПВП), в отношении которого наблюдалась обратная корреляция. Кроме того, во всех группах была выявлена статистически значимая положительная корреляция между содержанием витамина D и концентрацией ХС-ЛПВП (p<0,05).

Заключение. Авторы исследования пришли к заключению, что заболевания щитовидной железы тесно связаны с такими факторами, как содержание витамина D и метаболизм липидов. Существует подтвержденная взаимосвязь между концентрацией витамина D, липидным профилем и дисфункцией щитовидной железы.

Ключевые слова: витамин D; липидный профиль; гипертиреоз; гипотиреоз.

Как цитировать:

Awla A.H., Hamadamin B.J., Omar S.Y., Hamadameen W.A. Оценка взаимосвязи между содержанием витамина D и липидным профилем при заболеваниях щитовидной железы: сравнительный анализ данных пациентов с гипотиреозом, гипертиреозом и здоровых добровольцев // CardioCoматика. 2025. Т. 16, № 1. С. XX–XX. DOI: https://doi.org/10.17816/CS631331

Рукопись получена: 27.04.2024 Рукопись одобрена: 03.02.2025 Опубликована online: 07.03.2025

¹ Университет Рапарин, Сулеймания, Курдистан, Ирак;

² Смарт Хелз Тауэр, Сулеймания, Курдистан, Ирак

ORIGINAL STUDY ARTICLES Vol. 16 (1) 2025 CardioSomatics

DOI: https://doi.org/10.17816/CS631331

Exploring the link between vitamin D and lipid profile in thyroid disorders: a comparative analysis of hypothyroidism, hyperthyroidism, and healthy control group

Awat Hamad Awla¹, Badinan Jalal Hamadamin¹, Sleman Yousif Omar¹, Wafa Ahmed Hamadameen²

ABSTRACT

6

BACKGROUND: Thyroid disorders, including hyperthyroidism and hypothyroidism, are prevalent worldwide, affecting millions. Both thyroid hormone and vitamin D status regulate lipid metabolism, maintain cellular function via steroid receptors, and may influence each other's actions through similar gene response areas.

AIM: This study aims to compare the lipid profile and vitamin D status levels in patients with thyroid disorders to those of healthy controls.

MATERIALS AND METHODS: This cross-sectional, descriptive study included 225 individuals: 76 with hyperthyroidism, 75 with hypothyroidism, and 74 healthy controls. Blood serum samples were analyzed for concentrations of Thyroid-Stimulating Hormone (TSH), Free Triiodothyronine (FT3), Free Thyroxine (FT4), lipid profile, and 25-Hydroxyvitamin D (25(0H)D.

RESULTS: Hypothyroidism patients exhibited significantly higher mean values of TSH (26.29 ± 14.89 mU/L; p <0.001), BMI (24.16 ± 3.62 kg/m²; p <0.001), total cholesterol (TC) (220.23 ± 26.41 mg/dL; p <0.001), triglycerides (TG) (134.53 ± 21.37 mg/dL; p <0.001), low-density lipoproteins (LDL)(144.6 ± 25.53 mg/dL; p <0.001), very-low-density lipoproteins (VLDL)(26.90 ± 4.27 mg/dL; p <0.001), and non-HDL cholesterol (157.50 ± 29.63 mg/dL; p =0.032) compared to controls and hyperthyroidism patients. They also exhibited significantly lower mean levels of FT3 (0.535 ± 0.71 ng/mL; p <0.001) and FT4 (10.95 ± 6.41 pmol/L; p <0.001). Vitamin D levels were lower in hypothyroidism patients (25.30 ± 13.69 ng/mL; p =0.035) compared to healthy controls (29.43 ± 16.37 ng/mL) but higher than hyperthyroidism patients (23.02 ± 15.55 ng/mL). A majority (60%) of hypothyroidism patients were vitamin D deficient (<20 ng/mL; p <0.001).TSH showed a significant positive correlation with lipid parameters (p <0.05) except for High-Density Lipoprotein Cholesterol (HDL-C), which was inversely correlated. Vitamin D levels demonstrated a significant positive correlation with HDL-C across all groups (p <0.05).

CONCLUSIONS: The study concludes that thyroid disorders are closely associated with vitamin D levels and lipid metabolism. There is a confirmed link between vitamin D, lipid profile, and cardiovascular risks in patients with thyroid disorders.

Keywords: vitamin D; lipid profile; hyperthyroidism; hypothyroidism.

To cite this article:

Awla AH, Hamadamin BJ, Omar SY, Hamadameen WA. Exploring the link between vitamin D and lipid profile in thyroid disorders: a comparative analysis of hypothyroidism, hyperthyroidism, and healthy control group. *CardioSomatics*. 2025;16(1):XX–XX. DOI: https://doi.org/10.17816/CS631331

Received: 27.04.2024 Accepted: 03.02.2025 Published online: 07.03.2029

¹ University of Raparin, Sulaymaniyah, Kurdistan region, Iraq;

² Smart Health Tower, Sulaimani, Kurdistan, Iraq

ВВЕДЕНИЕ

Болезни щитовидной железы остаются наиболее распространенными заболеваниями эндокринной системы во всем мире [1]. Показатели заболеваемости и распространенности этих расстройств со временем увеличиваются. В общей популяции гипотиреоз наблюдается приблизительно у 4-10% лиц, однако частота развития субклинической формы еще выше и может достигать 20% в некоторых демографических группах, особенно среди пожилых людей. Гипертиреоз диагностируют реже. Его распространенность составляет около 0,8-2%, причем заболеваемость выше у женщин. Недостаточное поступление в организм йода считается важным аспектом дисфункции щитовидной железы и отмечается приблизительно у 30% населения планеты [2, 3]. Этот фактор особенно важен в тех регионах, где мероприятия по использованию населением йодированной соли осуществляются неэффективно. В основе указанных заболеваний лежит избыточная или недостаточная выработка гормонов щитовидной железы, которые играют важную роль в регулировании обмена веществ, утилизации энергии и поддержании гомеостаза [4]. Нарушения синтеза гормонов щитовидной железы, а именно гипертиреоз (т. е. избыточная активность щитовидной железы) и гипотиреоз (недостаточная активность щитовидной железы), могут влиять на метаболические процессы, использование энергии и равновесие внутренней среды организма. Гипертиреоз сопровождается повышением активности метаболизма. Это приводит к увеличению энергозатрат в состоянии покоя, уменьшению массы тела, усиленному расщеплению жиров и более интенсивной выработке глюкозы. Напротив, гипотиреоз характеризуется уменьшением энергозатрат в состоянии покоя и замедлением других обменных процессов вследствие низкой скорости метаболизма [5].

Кроме того, при заболеваниях щитовидной железы часто нарушается липидный обмен. Важную роль в этом процессе играет дислипидемия, то есть изменение физиологического соотношения различных фракций липидов в крови [6].

Результаты недавних исследований указывают на то, что при развитии заболеваний щитовидной железы наблюдаются разнообразные взаимодействия множества физиологических факторов, к которым относятся обмен липидов, гормональная регуляция, иммунный ответ и метаболизм микронутриентов [7]. В частности, особая роль среди микронутриентов принадлежит витамину D, который вызывает особый интерес научного сообщества. Хорошо известно, что витамин D участвует в поддержании гомеостаза кальция и здоровья костной ткани. Он обладает плейотропными эффектами, к числу которых относятся иммуномодуляция, дифференцировка клеток и благоприятное влияние на сердечно-сосудистую систему [8]. Необходимо отметить, что рецепторы витамина D экспрессируются в клетках щитовидной железы. Следовательно, он может участвовать в регуляции ее функции [9].

Несмотря на важное значение витамина D, дефицит этого микронутриента наблюдается более чем у 10 миллионов человек во всем мире, преимущественно в регионах с ограниченной инсоляцией [10]. Кроме того, у лиц с заболеваниями щитовидной железы дефицит витамина D встречается чаще вследствие нарушений ее функции и метаболизма [11].

В то же время наличие дислипидемии, характерной для заболеваний щитовидной железы, приводит к изменениям показателей липидного обмена. У лиц с гипотиреозом содержание общего холестерина и триглицеридов (ТГ) часто повышено, тогда как у пациентов с гипертиреозом эти показатели снижены [12, 13]. Кроме того, в ряде исследований были выявлены изменения концентраций липидов при субклиническом гипертиреозе. Это свидетельствует о том, что гормоны щитовидной железы и тиреотропный гормон (ТТГ) оказывают разное влияние на обмен липидов [14, 15]. Указанные нарушения липидного профиля считаются одной из причин повышения риска развития сердечно-сосудистых заболеваний у лиц с дисфункцией шитовидной железы [16]. Несмотря на то, что результаты многочисленных исследований подтвердили связь между дефицитом витамина D и нарушениями липидного профиля в разных популяциях, механизм, лежащий в основе этой связи, остается неясным, особенно в контексте патогенеза заболеваний щитовидной железы. В упомянутых исследованиях были получены противоречивые результаты [17–19]. Таким образом, для оценки роли витамина D в регуляции обмена липидов у лиц с заболеваниями щитовидной железы необходимы дальнейшие всесторонние исследования.

ЦЕЛЬ

При проведении настоящего исследования авторы сравнивали липидный профиль и концентрацию витамина D у лиц с заболеваниями щитовидной железы (включая гипотиреоз и гипертиреоз) и у здоровых людей. Цель исследования состояла в определении возможных взаимосвязей между функцией щитовидной железы, обменом липидов и содержанием витамина D, а также в оценке влияния этих показателей на патофизиологию метаболических нарушений, обусловленных щитовидной железой. Кроме того, в ходе исследования анализировали влияние дисфункции щитовидной железы на факторы риска развития сердечнососудистых заболеваний и изучали потенциальные методы лечения, позволяющие контролировать эти факторы.

материалы и методы

Дизайн исследования

Это исследование случай — контроль было выполнено в лечебном учреждении «Смарт Хелс Tayэр» (Smart Health Tower) в г. Сулеймания, Ирак.

Участники исследования

В поликлинике «Смарт Хелс Тауэр» провели рандомизированный набор 225 пациентов обоих полов в возрасте 20—75 лет. Исследуемая популяция включала 76 пациентов с гипертиреозом, 75 пациентов с гипотиреозом и 74 здоровых добровольца в контрольной группе. Средний возраст составлял 39,4±11,5 года в группе участников с гипертиреозом, 38,94±10,57 года в контрольной группе здоровых добровольцев и 41,09±12,03 года в группе участников с гипотиреозом. Распределение пациентов по полу было следующим: 49 (64,5%) мужчин и 27 (35,5%) женщин в группе с гипертиреозом, 34 (45,9%) мужчины и 40 (54,1%) женщин в контрольной группе и 28 (37,3%) мужчин и 47 (62,7%) женщин в группе с гипотиреозом.

Критерии отбора

После подробного объяснения целей и процедур исследования все участники предоставили письменное информированное согласие.

Критерии включения: лица в возрасте от 20 до 75 лет любого пола с гипертиреозом или гипотиреозом, диагностированным в соответствии с утвержденными диагностическими критериями, а также здоровые добровольцы соответствующего возраста для включения в контрольную группу.

Критерии исключения: пациентов исключали из исследования при наличии системных заболеваний или получении лекарственной терапии, которая могла повлиять на результаты оценки функции щитовидной железы. В частности, учитывали состояния, которые могут привести к некорректному выявлению повышенной концентрации ТТГ в крови, включая беременность, грудное вскармливание, острые инфекции, воспалительные заболевания, сахарный диабет, заболевания печени или почек, злокачественные новообразования, коронарную болезнь сердца и дислипидемию у лиц, получающих терапию.

Условия проведения и продолжительность исследования

Это исследование было выполнено в период с июля по декабрь 2023 г. в лечебном учреждении «Смарт Хелс Тауэр» в г. Сулеймания. Получено одобрение этического комитета Университета Рапарина.

Этическая экспертиза

Запрос на проведение исследования был официально одобрен этическим комитетом факультета естественных наук Университета Рапарина, что отражено в протоколе № 30-01-0211 от января 2024 г. Перед сбором образцов все участники предоставили письменное информированное согласие. Все процедуры соответствовали законодательным актам Ирака и протоколам проведения биомедицинских исследований, а также этическим принципам, изложенным в Хельсинкской декларации 1975 г.

Измерение биохимических показателей

Образцы венозной крови для проведения биохимического анализа были получены при строгом соблюдении правил асептики у всех участников исследования после ночного воздержания от приема пиши в течение как минимум 10-12 часов. Кровь быстро собирали в вакуумные пробирки с разделительным гелем. После свертывания сыворотку отделяли от цельной крови путем центрифугирования при скорости 6000 об/мин в течение 15 минут на настольной центрифуге ROTOFIX 32 A («Хеттих Лэб Текнолоджи» (Hettich Lab Technology), Германия). Полученную сыворотку немедленно использовали для измерения концентраций ТТГ, свободного Т3, свободного Т4, витамина D, общего холестерина, триглицеридов, ЛПВП и ЛПНП. Измерения проводили в соответствии со стандартными техническими рекомендациями для автоматизированных иммуноферментных анализаторов Cobas e 411 («Рош Дайэгностикс» (Roche Diagnostics), Мангейм, Германия), принцип работы которых основан на патентованной технологии электрохемилюминесценции с использованием соединения рутения в измерительной ячейке. Однако концентрации ЛПОНП и холестерина не-ЛПВП рассчитывали на основе индивидуальных показателей липидограммы по следующим формулам: ЛПОНП=ТG/5; XC-не-ЛПВП=общий холестерин минус ЛПВП [20].

Измерение антропометрических показателей

При измерении роста и массы тела использовали стандартизированное оборудование. Массу тела участников, одетых в легкую одежду, измеряли с помощью калиброванных электронных весов. Рост участников (без обуви) определяли с помощью портативного ростомера и регистрировали с точностью до одного сантиметра. Индекс массы тела (ИМТ) рассчитывали путем деления массы тела (в килограммах) на квадрат роста (в квадратных метрах).

Диапазон референсных значений

Далее приведены диапазоны нормальных значений с учетом данных, указанных в аналитических тестсистемах.

Показатели функции щитовидной железы: ТТГ — 0,4–4 мкМЕ/мл; свободный ТЗ — 2,23–6,43 пмоль/л, свободный Т4 — 10–23,81 пмоль/л.

Гипотиреоз диагностируют при высокой концентрации ТТГ (более 4,5 мкМЕ/мл) и сниженной концентрации свободных тиреоидных гормонов (Т3 и Т4). Клинические проявления часто включают утомляемость, увеличение массы тела и повышенную чувствительность к холоду. Гипертиреоз характеризуется снижением концентрации ТТГ (менее 0,4 мкМЕ/мл) и повышением концентрации свободных гормонов (Т3 и Т4), что сопровождается такими симптомами, как снижение массы тела, тахикардия и повышенная чувствительность к теплу.

Показатели липидограммы: общий холестерин — 150—250 мг/дл, триглицериды: 100-150 мг/дл, холестерин ЛПВП: ≥ 40 мг/дл, холестерин ЛПНП: 60-130 мг/дл, ЛПОНП: 5-40 мг/дл.

Концентрация витамина D считается оптимальной при значениях ≥30 нг/мл, недостаточной — при значениях от 20 до <30 нг/мл и соответствующей дефициту — при значениях <20 нг/мл. Эти референсные диапазоны отражают нормальные значение соответствующих показателей и используются для выявления и диагностики заболеваний щитовидной железы и дислипидемий в клинических условиях.

Статистический анализ

При выполнении статистического анализа использовали программное обеспечение SPSS версии 23 («АйБиЭм Корпорейшн» (IBM Corporation), Армонк, штат Нью-Йорк, США). Нормальность распределения данных оценивали с помощью критерия Колмогорова—Смирнова. Сравнение непрерывных переменных между группами пациентов с гипотиреозом или гипертиреозом и контрольной группой проводили посредством однофакторного дисперсионного анализа. Результаты представлены в виде среднего значения±стандартное отклонение (среднее±SD) для непрерывных переменных и в виде n (%) для категориальных переменных использовали критерий хи-квадрат. Для анализа корреляций между переменными применяли коэффициент корреляции Пирсона при уровне значимости p <0,05.

РЕЗУЛЬТАТЫ

Участники исследования

На рис. 1 представлено распределение участников исследования с указанием соответствующих категорий.

В табл. 1 приведены сравнительные данные о возрасте, ИМТ и концентрациях гормонов щитовидной железы

у пациентов трех групп. Согласно полученным данным, статистически значимые различия возраста в трех группах (у пациентов с гипертиреозом в I группе, у здоровых добровольцев во II контрольной группе и у пациентов с гипотиреозом в III группе) отсутствовали, что подтверждается значением p=0.480. Однако показатель ИМТ в трех группах статистически значимо различался и составлял у пациентов с гипертиреозом 21,99±2,95 кг/м², у здоровых добровольцев в контрольной группе — $22,64\pm2,87$ кг/м² и у пациентов с гипотиреозом — 24,16±3,62 кг/м² (р <0,001). Гипертиреоз наблюдался преимущественно у мужчин (64,5%), тогда как у женщин преобладал гипотиреоз (62,7%). Более того, в трех указанных группах отмечались статистически значимые различия концентраций гормонов щитовидной железы. В группе с гипертиреозом концентрация свободного Т3 составляла 2,42±1,01 нг/мл, свободного Т4 — 34,82±12,96 пмоль/л, а ТТГ — 0,33±0,30 мМЕ/л. У здоровых добровольцев в контрольной группе концентрация свободного ТЗ равнялась $1,40\pm1,03$ нг/мл, свободного T4 — $16,56\pm5,78$ пмоль/л, а ТТГ — 2,20±1,26 мМЕ/л. Наконец, в группе пациентов с гипотиреозом концентрация свободного ТЗ составляла 0.535 ± 0.71 нг/дл, свободного T4 — 10.95 ± 6.41 пмоль/л, а ТТГ — 26,29±14,89 мМЕ/л. Полученное значение р было менее 0.0001, что указывает на статистически значимое различие между группами.

Основные результаты исследования

В табл. 2 представлены средние значения концентрации витамина D в крови и показателей липидограммы в трех группах. Для выявления статистически значимых различий выполняли анализ и сравнение данных из этой таблицы.

Как указано в табл. 2, среднее значение \pm стандартное отклонение концентрации 25-гидроксивитамина D составило 23,02 \pm 15,55 нг/мл у лиц с гипертиреозом, 25,30 \pm 13,69 нг/мл у лиц с гипотиреозом и 29,43 \pm 16,37 нг/мл в контрольной группе. Эти результаты свидетельствуют

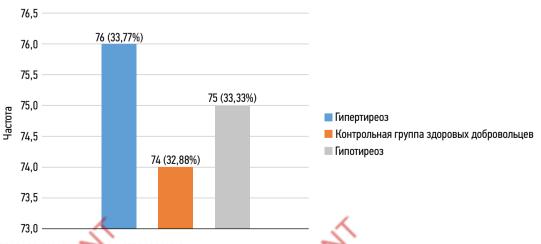


Рис. 1. Распределение участников исследования.

Fig. 1. Distribution of the study participants.

Таблица 1. Сравнительный анализ исходных характеристик и антропометрических показателей участников исследования **Table 1.** Comparative analysis of basic and anthropometric parameters among study participants

10

	1	Исследуемые группы	Y	
Общие характеристики	Гипертиреоз (<i>n</i> =76) Среднее±SD (95% ДИ)	Контрольная группа здоровых добровольцев (n=74) Среднее±SD (95% ДИ)	Гипотиреоз (<i>n</i> =75) Среднее±SD (95% ДИ)	Значение <i>р</i>
Возраст, среднее (SD), лет	39,40±11,5 (36,49-42,037)	38,94±10,57 (36,49–41,39)	41,09±12,03 (38,323–43,86)	0,480
Распределение по возрасту, <i>n</i> (%) 20–30 30–40 40–50 >50	17 (22,4%) 23 (30,3%) 20 (26,3%) 16 (21,0%)	17 (23,0%) 20 (27,0%) 24 (32,4%) 13 (17,6%)	16 (21,3%) 18 (24,0%) 20 (26,7%) 21 (28,0%)	0,795
Пол, <i>n</i> (%) Мужчины Женщины	49 (64,5%) 27 (35,5%)	34 (45,9%) 40 (54,1%)	28 (37,3%) 47(62,7%)	0,003
ИМТ (кг/м²)	21,99±2,95 (21,32–22,67)	22,64±2,87 (21,97–23,31)	24,16±3,62 (23,33–25,00)	<0,001
ТТГ, мМЕ/л	0,33±0,30 (0,260-0,400)	2,20±1,26 (1,89–2,48)	26,29±14,89 (22,87–29,73)	<0,001
Свободный Т3, нг/мл	2,42±1,01 (2,197–2,66)	1,40±1,03 (1,16–1,64)	0,535±0,71 (0,37–0,70)	<0,001
Свободный Т4, пмоль/л	34,82±12,96 (31,89–37,79)	16,56±5,78 (15,22-17,90)	10,95±6,41 (9,48–12,43)	<0,001

Примечание. ИМТ — индекс массы тела, Т3 — свободный трийодтиронин, Т4 — свободный тироксин; ТТГ — тиреотропный гормон, SD — стандартное отклонение. Результаты указаны как среднее значение±SD или n (%), n — количество участников; нз — статистически незначимо. Note. ИМТ — Body mass index; Т3 — free triiodothyronine; Т4 — free thyroxine; ТТГ — thyroid stimulating hormone, SD — standard deviation. Results are expressed as mean ±SD and (no. %), n — subjects' number, нз — non-significant.

Таблица 2. Статистические данные о содержании витамина D и концентрациях липидов в общей популяции **Table 2.** Statistical Description of Vitamin D, and lipid profile in the general population

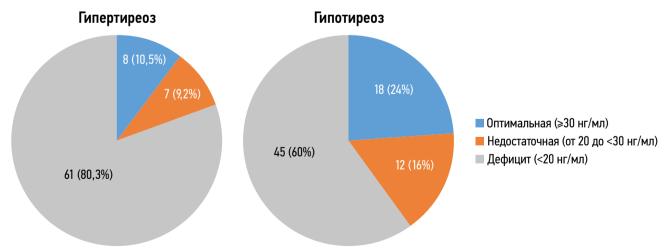
	Исследуемые группы			
Общие характеристики	Гипертиреоз (<i>n</i> =76) Среднее±SD (95% ДИ)	Контрольная группа здоровых добровольцев (<i>n</i> =74) Среднее±SD (95% ДИ)	Гипотиреоз (<i>n</i> =75) Среднее±SD (95% ДИ)	Значение <i>р</i>
Витамин D (нг/мл)				
Распределение участников в зависимости от концентрации витамина D, n (%)	23,02±15,55 (19,47–26,58)	29,43±16,37 (25,64–33,22)	25,30±13,69 (22,15–28,45)	0,035
Оптимальная (≽30 нг/мл) Недостаточная (от 20 до <30 нг/мл) Дефицит (<20 нг/мл)	8 (10,5%) 7 (9,2%) 61 (80,3%)	27 (36,5%) 19 (25,7%) 28 (37,8%)	18 (24,0%) 12 (16%) 45 (60%)	<0,001
Общий холестерин (мг/дл)	182,42±24,70 (176,78–188,07)	185,87±28,49 (179,27-192,48)	220,23±26,41 (214–226,31)	<0,001
Триглицериды (мг/дл)	108,98±21,89 (103,97–113,98)	117,99±28,77 (111,32–124,66)	134,53±21,37 (129,61–139,45)	<0,001
ХС-ЛПВП (мг/дл)	39,196±6,19 (37,77–40,61)	45,66±8,70 (43,65–4 <mark>7,6</mark> 6)	43,15±6,00 (41,77–44,54)	<0,001
ХС-ЛПНП (мг/дл)	121,94±26,39 (115,91–127,97)	123,23±30,37 (116,24–130,32)	144,6±25,53 (138,73–150,48)	<0,001

Таблица 2. Окончание **Table 2.** The ending

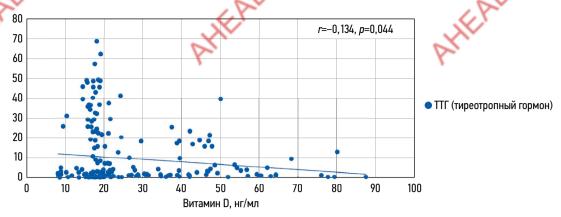
ОРИГИНА ЛЬНЫЕ

7	Исследуемые группы			
Общие характеристики	Гипертиреоз (<i>n</i> =76) Среднее±SD (95% ДИ)	Контрольная группа здоровых добровольцев (n=74) Среднее±SD (95% ДИ)	Гипотиреоз (<i>n</i> =75) Среднее±SD (95% ДИ)	Значение <i>р</i>
ЛПОНП (мг/дл)	21,79±4,37 (20,79–22,79)	23,59±5,75 (22,26–24,93)	26,90±4,27 (25,92±27,89)	<0,001
ХС-не-ЛПВП	145,86±31,56 (138,65–153,08)	157,33±31,87 (149,95–164,72)	157,50±29,63 (150,69–164,32)	0,032

Примечание. ОХС — общий холестерин, ТГ — триглицериды, ЛПНП — липопротеины низкой плотности; ЛПОНП — липопротеины очень низкой плотности, ЛПВП — липопротеины высокой плотности; ХС-не-ЛПВП — холестерин, не относящийся к фракции ЛПВП, SD — стандартное отклонение. Результаты указаны как средние значение±SD.


Note. OXC — Total cholesterol, TГ — Triglycerides, ЛПНП — Low-density lipoprotein, ЛПОНП — Very low-density lipoprotein, ЛПВП — High-density lipoprotein, XC-не-ЛПВП — non-HDL cholesterol, SD — standard deviation. Results are expressed as mean±SD.

о статистически значимом различии (p=0,035). Наблюдалось следующее распределение пациентов в зависимости от концентрации 25-гидроксивитамина D в крови, которая считалась оптимальной при значениях \geqslant 30 нг/мл, недостаточной при значениях от 20 до <30 нг/мл и соответствующей дефициту при значениях <20 нг/мл: у 10,5% пациентов с гипертиреозом этот показатель составлял >30 нг/мл, у 9,2% пациентов — от 20 до 30 нг/мл, и у 80,3% пациентов — <20 нг/мл. При гипотиреозе у 24% пациентов концентрация 25-гидроксивитамина D была >30 нг/мл, у 16% пациентов — от 20 до 30 нг/мл, и у 60% пациентов — <20 нг/мл, как показано на рис. 2.


Показатели липидограммы статистически значимо различались между всеми тремя группами (p < 0,001). У пациентов с гипертиреозом концентрации ОХС ($182,42\pm24,70$ мг/дл), ТГ ($108,98\pm21,89$ мг/дл), ЛПНП ($121,94\pm26,39$ мг/дл), ЛПОНП ($21,79\pm4,37$ мг/дл), ЛПВП ($39,196\pm6,19$ мг/дл) и ХС-не-ЛПВП

(145,86±31,56) были ниже, чем у лиц в контрольной группе. У пациентов с гипотиреозом концентрации ОХС (220,23±26,41 мг/дл), ТГ (134,53±21,37 мг/дл), ЛПНП (144,6±25,53 мг/дл), ЛПОНП (26,90±4,27 мг/дл) и ХС-не-ЛПВП (157,50±29,63) были статистически значимо выше, чем у участников контрольной группы. У лиц с гипотиреозом отмечалось статистически значимое снижение концентрации ЛПВП (43,15±6,00 мг/дл) по сравнению со здоровыми добровольцами (см. табл. 2 и рис. 3).

Данные, характеризующие связь между биохимическими показателями у пациентов с гипертиреозом и различными концентрациями витамина D, т. е. оптимальной (≥30 нг/мл), недостаточной (от 20 до <30 нг/мл) или соответствующей дефициту (<20 нг/мл), представлены в табл. 3. У пациентов с гипертиреозом и оптимальной концентрацией витамина D (≥30 нг/мл) наблюдались численно более высокие концентрации триглицеридов

Рис. 2. Распределение пациентов с гипертиреозом и гипотиреозом в зависимости от концентрации 25-гидроксивитамина D, т. е. оптимальной (≥30 нг/мл), недостаточной (от 20 до <30 нг/мл) и соответствующей дефициту (<20 нг/мл). **Fig. 2.** The Distribution of Hyperthyroidism (a) and Hypothyroidism (b) Patients According to 25-OH Vitamin D Levels: Optimal (≥30 ng/mL), Intermediate (20 to <30 ng/mL), and Deficient (<20 ng/mL).

Рис. 3. Диаграмма рассеяния, иллюстрирующая результаты анализа корреляций между содержанием витамина D и концентрацией тиреотропного гормона.

Fig. 3. Scatter Plot Showing Correlation analysis between vitamin D and thyroid-stimulating hormone levels.

12

Таблица 3. Сравнение биохимических показателей у пациентов с гипертиреозом и различными концентрациями витамина D **Table 3.** Comparison of biochemical parameters among hyperthyroid patients with different vitamin D levels

	Исследуемые группы			
Общие характеристики	Оптимальная (>30 нг/мл) (n=8) Среднее±SD (95% ДИ)	Недостаточная (от 20 до <30 нг/мл) (<i>n=</i> 7) Среднее±SD (95% ДИ)	Дефицит (<20 нг/мл) (<i>n</i> =61) Среднее±SD (95% ДИ)	Значение <i>р</i>
ИМТ (кг/м²)	20,895±3,009 (18,38–23,41)	21,692±3,6747 (18,29–25,09)	22,180±2,853 (21,45–22,90)	0,491
ТТГ, мМЕ/л	0,473±0,335 (0,19–0,75)	0,259±0,060 (0,203–0,31)	0,359±0,443 (0,24-0,47)	0,609
Свободный Т3, нг/мл	2,250±1,333 (1,13–3,36)	2,627±1,473 (1,26–3,98)	2,403±0,935 (2,16–2,64)	0,778
Свободный Т4, пмоль/л	28,944±16,501 (15,14–42,73)	26,612±10,689 (16,72–36,49)	36,239±12,435 (33,08–39,39)	0,075
0X (мг/дл)	185,687±39,405 (152,74–218,63)	179,514±14,193 (166,38-192,64)	182,619±23,556 (176,63–188,60)	0,892
Триглицериды (мг/дл)	127,65±34,247 (99,02—156,28)	97,671±9,465 (88,91-106,42)	107,625±19,673 (102,62–112,62)	0,017
ХС-ЛПВП (мг/дл)	41,225±5,955 (36,24–46,20)	41,885±10,768 (31,92-51,84)	38,853±5,777 (37,38–40,32)	0,339
ХС-ЛПНП (мг/дл)	120,787±34,984 (91,53–150,03)	119,757±10,061 (110,45–129,06)	122,185±26,584 (115,43–128,93)	0,968
ЛПОНП (мг/дл)	25,53±6,849 (19,80-31,25)	19,534±1,893 (17,78–21,28)	21,525±3,934 (20,52–22,52)	0,017
ХС-не-ЛПВП	141,875±14,242 (129,96–153,78)	160,342±28,387 (134,09–186,59)	144,348±33,226 (135,91–152,78)	0,423

Примечание. ИМТ — индекс массы тела, Т3 — свободный трийодтиронин, Т4 — свободный тироксин; ТТГ — тиреотропный гормон, SD — стандартное отклонение, ОХС — общий холестерин, ТГ — триглицериды, ЛПНП — липопротеины низкой плотности; ЛПОНП — липопротеины очень низкой плотности, ЛПВП — липопротеины высокой плотности; ХС-не-ЛПВП — холестерин, не относящийся к фракции ЛПВП, SD — стандартное отклонение.

Note. ИМТ — Body mass index; ТЗ — free triiodothyronine; Т4 — free thyroxine; ТТГ — thyroid stimulating hormone, ОХС — Total cholesterol, ТГ — Triglycerides, ЛПНП — Low-density lipoprotein, ЛПОНП — Very low-density lipoprotein, ЛПВП — High-density lipoprotein, ХС-не-ЛПВП — non-HDL cholesterol. SD — standard deviation.

и ЛПОНП, чем у пациентов с недостаточностью (от 20 до <30 нг/мл) или дефицитом (<20 нг/мл) витамина D, причем различия были статистически значимыми (p <0,05). Однако различия других показателей (ИМТ, концентрации

ТТГ, свободного Т3, свободного Т4, общего холестерина, ЛПВП, ЛПНП и ХС-не-ЛПВП) между подгруппами пациентов с различными концентрациями витамина D не достигали статистической значимости (p > 0.05).

Биохимические показатели пациентов с гипотиреозом, представленные в табл. 4. авторы дополнительно сравнивали в подгруппах с различными концентрациями витамина D, т. е. оптимальной (≥30 нг/мл), недостаточной (от 20 до <30 нг/мл) и соответствующей дефициту (<20 нг/мл). У пациентов с гипотиреозом и оптимальным или недостаточным содержанием витамина D концентрации ТТГ и ХС-не-ЛПВП были статистически значимо ниже, чем у лиц с гипотиреозом и дефицитом витамина D; эти различия характеризовались высокой статистической значимостью для концентраций ТТГ (p < 0,01) и ХС-не-ЛПВП (p < 0,05). И наоборот, наибольшие концентрации свободного Т4 были обнаружены у пациентов с гипотиреозом и оптимальным содержанием витамина D, а наименьшие — у пациентов с гипотиреозом и дефицитом витамина D: различия также были статистически значимыми. С другой стороны, концентрации общего холестерина, триглицеридов, ЛПНП и ЛПОНП были выше у пациентов с дефицитом витамина D, чем у лиц с промежуточным или оптимальным содержанием, однако эти различия не достигли статистической значимости (p > 0.05).

Данные, представленные в табл. 5 и рис. 4, подтверждают наличие статистически значимой положительной корреляции между концентрацией ТТГ с одной стороны и ИМТ, концентрациями ОХС, ТГ, ЛПНП и ЛПОНП с другой стороны. Напротив, между концентрацией ТТГ с одной стороны и концентрациями свободного Т3, свободного Т4 и витамина D с другой стороны наблюдалась статистически значимая отрицательная корреляция. Однако концентрация ТТГ не коррелировала с концентрациями ЛПВП и ХС-не-ЛПВП.

Что касается витамина D, авторы выявили очевидную обратную корреляцию между содержанием витамина D в сыворотке крови и концентрацией ТТГ. И наоборот, наблюдалась статистически значимая положительная корреляция между содержанием витамина D и концентрацией ЛПВП. Кроме того, отмечалось снижение концентрацией витамина D в сыворотке крови по мере увеличения концентраций ОХС, ТГ, ЛПНП и ЛПОНП, однако эта зависимость не была статистически значимой. Тем не менее, согласно данным в табл. 6, было обнаружено увеличение содержания витамина D при повышении концентрации ЛПВП, хотя оно и не достигло статистической значимости.

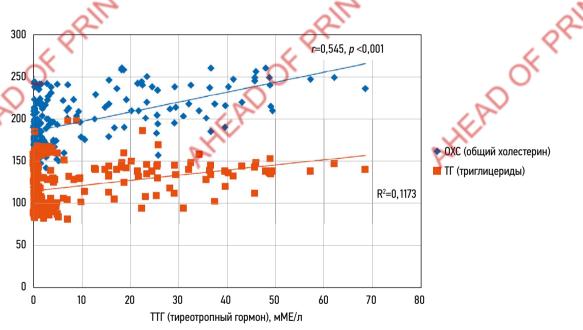
Таблица 4. Сравнение биохимических показателей у пациентов с гипотиреозом и различными концентрациями витамина D **Table 4.** Comparison of biochemical parameters among hypothyroid patients with different vitamin D level

0	Исследуемые группы			
Общие характеристики	Оптимальная (≽30 нг/мл) (л=18) Среднее±SD (95% ДИ)	Недостаточная (от 20 до <30 нг/мл) (n=12) Среднее±SD (95% ДИ)	Дефицит (<20 нг/мл) (n=45) Среднее±SD (95% ДИ)	Значение <i>р</i>
ИМТ (кг/м²)	24,607±4,293 (22,47–26,74)	25,84±5,231 (22,51–29,16)	23,545±2,614 (22,76–24,33	0,125
ТТГ, мМЕ/л	16,425±8,524 (12,18–20,66)	16,354±10,803 (9,49–23,21)	32,897±14,292 (28,60-37,19)	<0,001
Свободный Т3, нг/мл	0,667±1,043 (0,149–1,186)	0,735±1,214 (от -0,036 до 1,50)	0,430±0,214 (0,36–0,49)	0,288
Свободный Т4, пмоль/л	14,245±6,682 (10,92–17,56)	12,045±6,533 (7,89–16,19)	9,354±5,825 (7,604–11,104)	0,017
ОХ (мг/дл)	221,022±29,5 (206,35–235,69)	214,308±30,663 (194,82–233,79)	221,504±24,30 (214,20–228,80)	0,702
Триглицериды (мг/дл)	132,1±14,38 (124,94–139,25)	123,033±33,498 (101,74–144,31)	138,577±18,785 (132,93–144,22)	0,068
ХС-ЛПВП (мг/дл)	43,527±7,094 (39,99–47,05)	41,55±6,978 (37,116–45,98)	43,44±5,309 (41,84–45,03)	0,604
ХС-ЛПНП (мг/дл)	146,816±24,993 (134,38–159,24)	131,708±33,661 (110,32-153,09)	147,162±22,763 (140,32–154,00)	0,162
ЛПОНП (мг/дл)	26,42±2,877 (24,98–27,85)	24,606±6,699 (20,34–28,86)	27,715±3,757 (26,58–28,84)	0,068
ХС-не-ЛПВП	154,177±31,686 (138,42–169,93)	140,216±33,518 (118,92–161,51)	163,453±26,195 (155,58–171,32)	0,045

Примечание. ИМТ — индекс массы тела, Т3 — свободный трийодтиронин, Т4 — свободный тироксин; ТТГ — тиреотропный гормон, SD — стандартное отклонение, ОХС — общий холестерин, ТГ — триглицериды, ЛПНП — липопротеины низкой плотности; ЛПОНП — липопротеины очень низкой плотности, ЛПВП — липопротеины высокой плотности; ХС-не-ЛПВП — холестерин, не относящийся к фракции ЛПВП, SD — стандартное отклонение.

Note. ИМТ — Body mass index; T3 — free triiodothyronine; T4 — free thyroxine; TTГ — thyroid stimulating hormone, OXC — Total cholesterol, TГ — Triglycerides, ЛПНП — Low-density lipoprotein, ЛПВП — High-density lipoprotein, XC-не-ЛПВП — non-HDL cholesterol, SD — standard deviation.

Таблица 5. Результаты анализа корреляций между сывороточными концентрациями тиреотропного гормона, тиреоидных гормонов, показателями липидограммы и содержанием витамина D


Table 5. Correlation analysis between serum TSH levels, thyroid hormones, lipid profile, and vitamin D

14

Показатели	Коэффициент корреляции (r)	Значение <i>р</i>
Свободный Т3	-0,511**	<0,001
Свободный Т4	-0,499**	<0,001
ИМТ (кг/м²)	0,178**	0,007
Витамин D (нг/мл)	-0,134*	0,044
ОХС (мг/дл)	0,545**	<0,001
ТГ (мг/дл)	0,345**	<0,001
ЛПНП (мг/дл)	0,362**	<0,001
ЛПОНП (мг/дл)	0,345**	<0,001
ЛПВП (мг/дл)	0,051	0,448
ХС-не-ЛПВП	0,097	0,147

Примечание. ИМТ — индекс массы тела, Т3 — свободный трийодтиронин, Т4 — свободный тироксин; ТТГ — тиреотропный гормон, SD — стандартное отклонение, ОХС — общий холестерин, ТГ — триглицериды, ЛПНП — липопротеины низкой плотности; ЛПОНП — липопротеины очень низкой плотности, ЛПВП — липопротеины высокой плотности; ХС-не-ЛПВП — холестерин, не относящийся к фракции ЛПВП, SD — стандартное отклонение. * Корреляция статистически значима при уровне значимости 0,05 (двусторонний критерий); ** Корреляция статистически значима при уровне значимости 0,01 (двусторонний критерий).

Note. ИМТ — Body mass index; ТЗ — free triiodothyronine; Т4 — free thyroxine; ТТГ — thyroid stimulating hormone, ОХС — Total cholesterol, ТГ — Triglycerides, ЛПНП — Low-density lipoprotein, ЛПОНП — Very low-density lipoprotein, ЛПВП — High-density lipoprotein, ХС-не-ЛПВП — non-HDL cholesterol, SD — standard deviation. * Correlation is significant at the 0.01 level (2-tailed). ** Correlation is significant at the 0.01 level (2-tailed).

Рис. 4. Диаграмма рассеяния, иллюстрирующая корреляции между концентрациями общего холестерина, триглицеридов и тиреотропного гормона.

Fig. 4. Scatter plot showing correlation between total cholesterol, triglycerides, and thyroid-stimulating hormone levels.

Таблица 6. Результаты анализа корреляций между содержанием витамина D в сыворотке крови, индексом массы тела, концентрациями тиреоидных гормонов и показателями липидограммы

Table 6. Correlation analysis between serum vitamin D levels, body mass index, thyroid hormones, and lipid profile

Показатели	Коэффициент корреляции (r)	Значение <i>р</i>
ТТГ	-0,134*	0,044
Свободный Т3	-0,014	0,830
Свободный Т4	-0,048	0,470

Таблица 6. Окончание **Table 6.** The ending

Показатели	Коэффициент корреляции (r)	Значение <i>р</i>
ИМТ (кг/м²)	-0,085	0,202
ОХС (мг/дл)	-0,002	0,976
ТГ (мг/дл)	-0,117	0,081
ЛПНП (мг/дл)	-0,019	0,771
ЛПОНП (мг/дл)	-0,117	0,081
ЛПВП (мг/дл)	0,134*	0,044
ХС-не-ЛПВП	0,038	0,568

Примечание. ТТГ — тиреотропный гормон, ИМТ — индекс массы тела, ТЗ — свободный трийодтиронин, Т4 — свободный тироксин; ТТГ — тиреотропный гормон, SD — стандартное отклонение, ОХС — общий холестерин, ТГ — триглицериды, ЛПНП — липопротеины низкой плотности; ЛПОНП — липопротеины очень низкой плотности, ЛПВП — липопротеины высокой плотности; ХС-не-ЛПВП — холестерин, не относящийся к фракции ЛПВП, SD — стандартное отклонение. ** Корреляция статистически значима при уровне значимости 0,01 (двусторонний критерий). * Корреляция статистически значима при уровне значимости 0,05 (двусторонний критерий).

Note. THS — thyroid stimulating hormone, ИМТ — Body mass index; ТЗ — free triiodothyronine; Т4 — free thyroxine; ТТГ — thyroid stimulating hormone, ОХС — Total cholesterol, ТГ — Triglycerides, ЛПНП — Low-density lipoprotein, ЛПОНП — Very low-density lipoprotein, ЛПВП — High-density lipoprotein, XC-не-ЛПВП — non-HDL cholesterol, SD — standard deviation. ** Correlation is significant at the 0.01 level (2-tailed). * Correlation is significant at the 0.05 level (2-tailed).

ОБСУЖДЕНИЕ

В последние годы заболевания щитовидной железы, такие как гипотиреоз и гипертиреоз, становятся все более распространенными эндокринными расстройствами, которые включают как субклинические, так и клинически выраженные симптомы. Представляется важным определить взаимосвязи между содержанием витамина D и показателями липидограммы при заболеваниях щитовидной железы, учитывая сложные взаимодействия этих факторов и их влияние на метаболизм и здоровье сердечно-сосудистой системы. В этом исследовании авторы сравнивали содержание витамина D, а также показатели липидограммы у пациентов с гипотиреозом и гипертиреозом.

В исследование были включены 225 участников в возрасте от 20 до 75 лет. В это число входили 76 (33,77%) пациентов с гипертиреозом, 75 (32,88%) пациентов с гипотиреозом и 74 (33,33%) здоровых добровольца, составлявших контрольную группу. Следует отметить, что гипертиреоз встречался чаще у мужчин (64,5%), а гипотиреоз у женщин (62,7%). Эти показатели распространенности у представителей разных полов согласуются с результатами предыдущих исследований [21, 22]. Данные настоящего исследования свидетельствуют о том, что индекс массы тела (ИМТ) у пациентов с гипотиреозом статистически значимо превышал тот же показатель у пациентов с гипертиреозом или у здоровых добровольцев. И наоборот, у пациентов с гипертиреозом ИМТ был статистически значимо ниже, чем в контрольной группе и группе участников с гипотиреозом (р <0,001). Эти наблюдения согласуются с результатами исследования 2012 г., которое провели SP Dipankar, BY Mali и NG Borade [23]. Авторы установили, что распространенность дислипидемии и доля жировой ткани в организме пациентов с дисфункцией щитовидной

железы статистически значимо превышали те же показатели в контрольной группе. Кроме того, у пациентов с гипотиреозом наблюдалась прямая корреляция между увеличением доли жировой ткани и повышением концентраций липидов, что служит причиной ожирения. В то же время у пациентов с гипертиреозом наблюдалась обратная зависимость.

Кроме того, при разделении участников настоящего исследования на три группы, включавшие пациентов с гипертиреозом, гипотиреозом и здоровых лиц, были обнаружены статистически значимые различия концентраций холестерина, ЛПНП, триглицеридов, ЛПОНП и ХС-не-ЛПВП в сыворотке крови. У пациентов с гипотиреозом концентрации липидов указанных фракций были повышены, тогда как у пациентов с гипертиреозом эти показатели были ниже, чем у здоровых лиц и участников с гипотиреозом. Различия оказались статистически значимыми (p < 0.001). Эти наблюдения подтверждают гипотезу о том, что гормоны щитовидной железы играют важную роль в липидном обмене. Тиреоидные гормоны активируют ГМГ-КоА-редуктазу и регулируют экспрессию генов рецепторов ЛПНП, что изменяет метаболизм липидов. Следовательно, гормоны щитовидной железы оказывают существенное влияние на различные показатели липидограммы.

При гипотиреозе наблюдаются низкие концентрации тиреоидных гормонов, что приводит к уменьшению экспрессии рецепторов ЛПНП. Это может препятствовать всасыванию холестерина ЛПНП из крови в клетки, а также расщеплению холестерина ЛПНП. В результате повышается концентрация общего холестерина в крови. Напротив, у лиц с гипертиреозом концентрации холестерина ЛПВП и ЛПНП в крови существенно снижены. Содержание

общего холестерина также имеет тенденцию к снижению [24]. Как было указано ранее, гормоны щитовидной железы влияют на экспрессию рецепторов ЛПНП и изменяют всасывание и расщепление частиц ЛПНП внутри клеток [6, 25]. Эти гормоны также играют важнейшую роль в регуляции концентраций триглицеридов в крови. При гипотиреозе часто наблюдается повышение содержания триглицеридов (ТГ). При гипертиреозе этот показатель, как правило, снижен. Такой эффект объясняется способностью гормонов щитовидной железы усиливать активность липопротеинлипазы (ЛПЛ) — фермента, участвующего в метаболизме ТГ. Несмотря на отсутствие нарушений синтеза ТГ, гипотиреоз связан с существенным снижением клиренса как эндогенных, так и экзогенных ТГ, что приводит к повышению концентрации триглицеридов в крови (гипертриглицеридемии). И наоборот, повышение интенсивности метаболизма при гипертиреозе может вызывать снижение содержания ТГ [26]. Кроме того, в настоящем исследовании концентрации витамина D в контрольной группе были выше, чем в группах пациентов с гипертиреозом и гипотиреозом. Наименьшие показатели содержания витамина D отмечались при гипертиреозе, и это различие было статистически значимым. Истощение запасов витамина D может быть связано с такими факторами, как дисфункция щитовидной железы и ее влияние на метаболизм и всасывание витамина D. У пациентов с гипертиреозом может наблюдаться ускоренный метаболизм, что потенциально усиливает поглощение витамина D или изменяет его метаболизм. Напротив, у лиц с гипотиреозом всасывание питательных веществ, таких как витамин D, может быть недостаточным вследствие сниженной моторики желудочно-кишечного тракта [27].

В нескольких исследованиях была обнаружена отрицательная корреляция между содержанием витамина D и показателями липидограммы, особенно концентрацией триглицеридов [28]. Однако, согласно данным настоящего исследования, у лиц с гипертиреозом и оптимальным содержанием витамина D концентрации триглицеридов и ЛПОНП были статистически значимо выше, чем у лиц с недостаточным содержанием или дефицитом витамина D. Этот результат согласуется с данными Emad H. и соавт., которые предполагали наличие положительной корреляции между концентрациями ТГ и ЛПОНП с одной стороны и содержанием витамина D в сыворотке крови пациентов с гипертиреозом [29] с другой стороны. В то же время у пациентов с гипотиреозом и оптимальным содержанием витамина D наблюдалась противоположная тенденция, что соответствовало данным предыдущих исследований. У лиц с дефицитом витамина D частота повышения концентрации триглицеридов и ЛПОНП была выше, чем у лиц с недостаточным или оптимальным содержанием витамина D, хотя различия не были статистически значимыми (*p* >0,05) [30].

Согласно результатам корреляционного анализа, повышение концентрации ТТГ в сыворотке крови

статистически значимо и положительно коррелировало с ИМТ, концентрациями ОХС, ТГ, ЛПНП и ЛПОНП у всех участников. Это связано с тем, что гормоны щитовидной железы регулируют важнейшие функции организма, такие как расщепление жиров и утилизацию энергии. Высокая концентрация ТТГ часто указывает на сниженную функцию щитовидной железы, которая не вырабатывает достаточного количества гормонов. В этом случае гипотиреоз вызывает нарушение метаболизма жиров и повышение концентраций холестерина, триглицеридов, ЛПНП и ЛПОНП в крови. Баланс гормонов щитовидной железы оказывает существенное влияние на метаболизм и концентрации липидов [26]. Эти наблюдения согласуются с данными John P. Walsh и соавт. [31], которые сообщили о повышении содержания ТТГ и положительной корреляции этого показателя с концентрациями ОХС, ТГ, ЛПНП и ЛПОНП. В другом исследовании у пациентов с сахарным диабетом 2-го типа отмечалась положительная и выраженная корреляция между концентрацией ТТГ и показателями липидограммы, за исключением ЛПВП [32]. Кроме того, результаты настоящего исследования указывают на то, что концентрация ТТГ отрицательно коррелирует с содержанием витамина 0 и положительно коррелирует с концентрацией ЛПВП. Эти результаты соответствуют данным других исследований по оценке зависимости между гипотиреозом и снижением концентрации витамина D, что дополняет доказательства связи между гипотиреозом, дефицитом витамина D и повышенным риском развития сердечно-сосудистых заболеваний (ССЗ) [33]. В недавнем исследовании авторы изучали взаимосвязь между содержанием витамина D, показателями липидограммы и результатами лабораторных анализов функции щитовидной железы. Полученные данные свидетельствовали об отсутствии статистически значимой отрицательной корреляции между содержанием витамина D и концентрациями свободного Т3, свободного Т4 при гипотиреозе и большинством показателей липидограммы, за исключением ЛПВП. Однако было установлено, что содержание витамина D характеризуется статистически значимой отрицательной корреляцией с концентрацией ТТГ, а также статистически значимой положительной корреляцией с концентрацией ЛПВП. Следует отметить, что в предыдущем исследовании Wang и соавт. (2016 г.) была обнаружена сильная корреляция между содержанием витамина D и показателями липидограммы. Эти результаты соответствуют данным других опубликованных исследований, согласно которым дефицит витамина D связан с увеличением риска развития сердечнососудистых заболеваний и смертности при повышенном содержании липидов в крови [34, 35].

Ограничения исследования

Ограничения исследования включали относительно небольшой объем выборки, несбалансированный

состав исследуемой популяции по полу, возможность систематической ошибки отбора в связи с участием в исследовании одного клинического центра, а также систематической ошибки предоставления информации пациентами.

ЗАКЛЮЧЕНИЕ

Полученные данные создают представление о сложной взаимосвязи между содержанием витамина D в крови и липидным профилем при различных заболеваниях щитовидной железы. Было установлено, что дисфункция щитовидной железы наблюдается у представителей обоих полов. Гипертиреоз чаще диагностируют у мужчин, тогда как гипотиреоз более распространен у женщин. Дефицит витамина D связан с более разнообразными нарушениями липидного профиля (включая повышенные концентрации общего холестерина, триглицеридов, ЛПНП. ЛПОНП и ХС-не-ЛПВП), которые у пациентов с гипотиреозом встречаются очень часто. Напротив, у пациентов с гипертиреозом и оптимальным содержанием витамина D концентрации триглицеридов и ЛПОНП повышены. Эти результаты подчеркивают необходимость контроля и коррекции потребления витамина D у пациентов с гипотиреозом, что позволит минимизировать риск развития дислипидемии и сердечно-сосудистых заболеваний. Кроме того, для оценки менее очевидных взаимосвязей между содержанием витамина D и обменом липидов при гипотиреозе и гипертиреозе необходимы дальнейшие исследования.

СПИСОК ЛИТЕРАТУРЫ | REFERENCES

- **1.** Taylor PN, Albrecht D, Scholz A, et al. Global epidemiology of hyperthyroidism and hypothyroidism. *Nature Reviews Endocrinology*. 2018;14(5): 301–316. doi: 10.1038/nrendo.2018.18
- **2.** Cappola AR, Desai AS, Medici M, et al. Thyroid and cardiovascular disease: research agenda for enhancing knowledge, prevention, and treatment. *Circulation*. 2019;139(25):2892–2909. doi: 10.1161/CIRCULATIONAHA.118.036859
- **3.** Gopalakrishnan M, Ramidha P, Vinitha V. Comparative study of lipid profile anomalies in thyroid dysfunction. *Natl J Physiol Pharm Pharmacol.* 2022;12(9):1366–1370. doi: 10.5455/njppp.2022.12.01014202213012022
- **4.** Duntas LH. Thyroid disease and lipids. *Thyroid*. 2002;12(4):287–293. doi: 10.1089/10507250252949405
- **5.** Christakos S, Dhawan P, Verstuyf A, et al. Vitamin D: metabolism, molecular mechanism of action, and pleiotropic effects. *Physiol Rev.* 2016;96(1):365–408. doi: 10.1152/physrev.00014.2015
- **6.** Kivity S, Agmon-Levin N, Zisappl M, et al. Vitamin D and autoimmune thyroid diseases. *Cell Mol Immunol.* 2011;8(3):243–247. doi: 10.1038/cmi.2010.73
- **7.** Holick MF. Vitamin D deficiency. *N Engl J Med.* 2007;357(3):266–281. doi: 10.1056/NEJMra070553
- **8.** Muscogiuri G, Mitri J, Mathieu C, et al. Mechanisms in endocrinology: vitamin D as a potential contributor in endocrine health and disease. *Eur J Endocrinol.* 2014;171(3):R101–110. doi: 10.1530/EJE-14-0158

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ

Вклад авторов. Awat Hamad Awla — разработка концепции и дизайна исследования, анализ и интерпретация данных, проверка критически важного содержания, окончательное утверждение рукописи для публикации и контроль всех аспектов работы; Badinan Jalal Hamadamin — анализ и интерпретация данных, подготовка рукописи и все аспекты работы; Sleman Yousif Omar — анализ и интерпретация данных, а также все аспекты работы; Wafa Ahmed Hamadameen — сбор, анализ и интерпретация данных. Все авторы внесли существенный вклад в подготовку этой статьи, а также рассмотрели и утвердили окончательный вариант рукописи до публикации.

Источники финансирования. Отсутствуют.

Раскрытие интересов. Авторы заявили об отсутствии конфликта интересов.

ADDITIONAL INFORMATION

Authors' contribution. All authors contributed significantly to the preparation of the work and reviewed and approved the final version of the article prior to publication. The primary contributions are allocated as follows: Awat Hamad Awla — responsible for the concept and design, data analysis and interpretation, review of critical intellectual content, final approval of the manuscript for publication, and oversight of all aspects of the work: Badinan Jalal Hamadamin — responsible for the analysis and interpretation, manuscript preparation, and all aspects of the work; Sleman Yousif Omar — Responsible for data analysis, interpretation, and all aspects of the work; Wafa Ahmed Hamadameen — contributed to data collection, data analysis, and interpretation.

Funding source. None.

Competing interests. The authors declare that they have no conflict of interest.

- **9.** Pearce EN. Update in lipid alterations in subclinical hypothyroidism. *J Clin Endocrinol Metab.* 2012;97(2):326–33. doi: 10.1210/jc.2011-2532
- **10.** Willard DL, Leung AM, Pearce EN. Thyroid function testing in patients with newly diagnosed hyperlipidemia. *JAMA Intern Med.* 2014;174(2):287–289. doi: 10.1001/jamainternmed.2013.12188
- **11.** Wang CY, Chang TC, Chen MF. Associations between subclinical thyroid disease and metabolic syndrome. *Endocr J.* 2012;59(10):911–917. doi: 10.1507/endocrj.ej12-0076
- **12.** Sun X, Sun Y, Li WC, et al. Association of thyroid-stimulating hormone and cardiovascular risk factors. *Intern Med.* 2015;54(20):2537–2544. doi: 10.2169/internalmedicine.54.4514
- **13.** Collet TH, Gussekloo J, Bauer DC, et al. Subclinical hyperthyroidism and the risk of coronary heart disease and mortality. *Arch Intern Med.* 2012;172(10):799–809. doi: 10.1001/archinternmed.2012.402
- **14.** Bashir NA, Bashir AAM, Bashir HA. Effect of vitamin D deficiency on lipid profile. *Am J Lab Med.* 2019;4(1): 11–18. doi: 10.11648/j.ajlm.20190401.12
- **15.** Saedisomeolia A, Taheri E, Djalali M, et al. Association between serum level of vitamin D and lipid profiles in type 2 diabetic patients in Iran. *J Diabetes Metab Disord*. 2014;13(1):7. doi: 10.1186/2251-6581-13-7

CardioSomatics

- **16.** Munteanu C, Schwartz B. The relationship between nutrition and the immune system. *Front Nutr.* 2022;9:1082500. doi: 10.3389/fnut.2022.1082500
- **17.** Sun CJ, McCudden C, Brisson D, et al. Calculated Non-HDL Cholesterol Includes Cholesterol in Larger Triglyceride-Rich Lipoproteins in Hypertriglyceridemia. *J Endocr Soc.* 2019;4(1):bvz010. doi: 10.1210/jendso/bvz010
- **18.** Abu-Helalah M, Alshraideh HA, Al-Sarayreh SA, et al. A Cross-Sectional Study to Assess the Prevalence of Adult Thyroid Dysfunction Disorders in Jordan. *Thyroid.* 2019;29(8):1052–1059. doi: 10.1089/thy.2018.0579
- **19.** Murgod R, Soans G. Changes in electrolyte and lipid profile in hypothyroidism. *Int J Life Sci Pharma Res.* 2012;2(3):185–194.
- **20.** Dipankar SP, Mali BY. Estimation of lipid profile, body fat percentage, body mass index, waist to hip ratio in patients with hypothyroidism and hyperthyroidism. *J Phys Pharm Adv.* 2012;2(9):330–336.
- **21.** Chen, Y., Wu X, Wu R, et al. Changes in profile of lipids and adipokines in patients with newly diagnosed hypothyroidism and hyperthyroidism. *Sci Rep.* 2016;6(1):26174. DOI:10.1038/srep26174
- **22.** Rizos C, Elisaf M, Liberopoulos E. Effects of thyroid dysfunction on lipid profile. *Open Cardiovasc Med J.* 2011;5:76–84. doi: 10.2174/1874192401105010076
- **23.** Tsiaras WG, Weinstock MA. Factors influencing vitamin D status. *Acta Derm Venereol.* 2011;91(2):115–124. doi: 10.2340/00015555-0980

- **24.** Kim MR, Jeong SJ. Relationship between Vitamin D Level and Lipid Profile in Non-Obese Children. *Metabolites*. 2019;9(7):125. doi: 10.3390/metabo9070125
- **25.** Al-Mafraji EHA, Al-Samarrai RRH. Evaluation the Correlation between Vitamin D and Thyroid Hormones in Women with Thyroid Diseases in Kirkuk City. *Int J Med Sci.* 2020;3(1):114–115.
- **26.** Rani P, Gupta S, Gupta G. Relation of serum 25 (OH) D with variables of thyroid and lipid profile in perimenopausal women. *International Journal of Reproduction, Contraception, Obstetrics and Gynecology.* 2017;6(3):1088. doi: 10.18203/2320-1770.ijrcog20170590 **27.** Walsh JP, Bremner AP, Bulsara MK, et al. Thyroid dysfunction and serum lipids: a community-based study. *Clin Endocrinol.* 2005;63(6):670–675. doi: 10.1111/j.1365-2265.2005.02399.x
- **28.** Jiffri EH. Relationship between lipid profile blood and thyroid hormones in patient with type 2 diabetes mellitus. *Adv Obes Weight Manag Control.* 2017;6(6):178–182. doi: 10.15406/aowmc.2017.06.00176 **29.** Alsamghan AS, Alsaleem SA, Alzahrani MAS, Patel A, Mallick AK, Sheweita SA. Effect of Hypovitaminosis D on Lipid Profile in Hypothyroid Patients in Saudi Arabia. *Oxid Med Cell Longev.* 2020;2020:6640402. doi: 10.1155/2020/6640402
- **30.** Wang Y, Si S, Liu J, et al. The Associations of Serum Lipids with Vitamin D Status. *PLoS One.* 2016;11(10):e0165157. doi: 10.1371/journal.pone.0165157
- **31.** Fry CM, Sanders TA. Vitamin D and risk of CVD: a review of the evidence. *Proc Nutr Soc.* 2015;74(3):245–257. doi: 10.1017/S0029665115000014

ОБ АВТОРАХ

* Awat Hamad Awla, ассистент;

адрес: 4 Smart Health Tower, Сулеймания, Курдистан, Ирак, 46000; ORCID: 0000-0002-4265-0453;

e-mail: Awat.hamad@uor.edu.krd

Badinan Jalal Hamadamin;

ORCID: 0000-0001-5690-2132;

e-mail: badinan.jalal@uor.edu.krd Sleman Yousif Omar, ассистент;

ORCID: 0000-0002-9796-8063:

e-mail: 8063sleman.yousif@uor.edu.krd

Wafa Ahmed Hamadameen;

e-mail: Wafa.a.mangury@gmail.com

* Автор, ответственный за переписку / Corresponding author

AUTHORS' INFO

* Awat Hamad Awla, Assistant Lecturer;

Address: 4 Smart Health Tower, Sulaimani, Kurdistan, Iraq, 46000;

ORCID: 0000-0002-4265-0453; e-mail: Awat.hamad@uor.edu.krd

Badinan Jalal Hamadamin;

ORCID: 0000-0001-5690-2132; e-mail: badinan.jalal@uor.edu.krd

Sleman Yousif Omar, Assistant Lecturer;

ORCID: 0000-0002-9796-8063:

e-mail: 8063sleman.yousif@uor.edu.krd

Wafa Ahmed Hamadameen:

e-mail: Wafa.a.mangury@gmail.com

e-mail. wara.a.mangury@gmail.com