Синтез альтернантных полимерных щеток с боковыми поли-2-алкил-2-оксазолиновыми цепями для биомедицинских применений

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

С помощью подхода “прививка через” в водной среде синтезированы альтернантные цилиндрические полимерные щетки. Макромономерами служили поли-2-этил-2-оксазолин и поли-2-изопропил-2-оксазолин, содержащие в качестве концевых групп остатки винилбензола и N-замещенного малеимида. Макромономеры с молекулярной массой (4.3–4.7) × 103 получены методом катионной полимеризации с раскрытием цикла 2-алкил-2-оксазолинов с применением инициаторов 4-хлорметилстирола и 4-малеимидобензолсульфонилхлорида. Полимерные щетки получены сополимеризацией макромономеров в растворе хлорбензола при температуре 70 °C и инициировании динитрилом азобисизомасляной кислоты, а также в водных растворах в условиях окислительно-восстановительного инициирования под действием персульфата калия и сульфата железа(II) в присутствии восстановителя гидросульфита натрия. Определена относительная активность полиоксазолиновых макромономеров по методу Майо‒Льюиса при их сополимеризации в растворе хлорбензола: r1 = 0.015 и r2 = 0.115. Рассмотрена возможность полимеризации в водных растворах при пониженных (3 °C) и повышенных (75 °C) значениях температуры. Молекулярно-массовые и гидродинамические характеристики полимерных щеток определены методами гель-проникающей хроматографии, статического и динамического рассеяния света. Образцы альтернантных полимерных щеток характеризуются массами (15‒52) × 103 и узким молекулярно-массовым распределением 1.32–1.66. Температура фазового разделения в водных растворах для исследованных полимерных щеток находится в диапазоне 33°–39 °C.

全文:

受限制的访问

作者简介

А. Блохин

Институт высокомолекулярных соединений – филиал Петербургского института ядерной физики им. Б.П. Константинова Национального исследовательского центра “Курчатовский институт”

编辑信件的主要联系方式.
Email: blokhin_an@hq.macro.ru
俄罗斯联邦, Санкт-Петербург

Т. Кирилэ

Институт высокомолекулярных соединений – филиал Петербургского института ядерной физики им. Б.П. Константинова Национального исследовательского центра “Курчатовский институт”

Email: blokhin_an@hq.macro.ru
俄罗斯联邦, Санкт-Петербург

А. Разина

Институт высокомолекулярных соединений – филиал Петербургского института ядерной физики им. Б.П. Константинова Национального исследовательского центра “Курчатовский институт”

Email: blokhin_an@hq.macro.ru
俄罗斯联邦, Санкт-Петербург

А. Филиппов

Институт высокомолекулярных соединений – филиал Петербургского института ядерной физики им. Б.П. Константинова Национального исследовательского центра “Курчатовский институт”

Email: blokhin_an@hq.macro.ru
俄罗斯联邦, Санкт-Петербург

А. Теньковцев

Институт высокомолекулярных соединений – филиал Петербургского института ядерной физики им. Б.П. Константинова Национального исследовательского центра “Курчатовский институт”

Email: blokhin_an@hq.macro.ru
俄罗斯联邦, Санкт-Петербург

参考

  1. Иванов И.В., Мелешко Т.К., Кашина А.В., Якиманский А.В. // Успехи химии. 2019. Т. 88. № 12. С. 1248.
  2. Pietrasik J., Sumerlin B.S., Lee R.Y., Matyjaszewski K. // Macromol. Chem. Phys. 2007. V. 208. P. 30.
  3. Nese A., Lebedeva N.V., Sherwood G., Averick S., Li Y., Gao H., Peteanu L., Sheiko S.S., Matyjaszewski K. // Macromolecules. 2011. V. 44. P. 5905.
  4. Chen T., Yang H., Wu X., Yu D., Ma A., He X., Sun K., Wang J. // Langmuir. 2019. V. 35. P. 3031.
  5. Cheng G., Böker A., Zhang M., Krausch G., Müller A.H.E. // Macromolecules. 2001. V. 34. P. 6883.
  6. Pyun J., Kowalewski T., Matyjaszewski K. // Macromol. Rapid Comm. 2003. V. 24. P. 1043.
  7. Ilgach D.M., Meleshko T.K., Yakimansky A.V. // Polymer Science C. 2015. V. 57. № 1. P. 3.
  8. Барабанова А.И., Громов В.Ф., Бунэ Е.В., Богачев Ю.С., Козлова Н.В., Телешов Э.Н. // Высокомолек. соед. А. 1994. Т. 36. № 6. С. 901.
  9. Nekrasova Т.N., Кirila Т.Yu., Kurlykin М.P., Теn′kovtsev А.V., Filippov А.P. // Polymer Science В. 2021. V. 63. № 2. P. 116.
  10. Gubarev A.S., Lezov A.A., Podsevalnikova A.N., Mikusheva N.G., Fetin P.A., Zorin I.M., Aseyev V.O., Sedlacek O., Hoogenboom R., Tsvetkov N.V. // Polymers. 2023. V. 15. P. 623.
  11. Rodchenko S., Amirova A., Milenin S., Ryzhkov A., Talalaeva E., Kalinina A., Kurlykin M., Tenkovtsev A., Filippov A. // Eur. Polym. J. 2020. V. 140. Р. 110035.
  12. Witte H., Seeliger W. // Justus Liebigs Annalen der Chemie. 1974. P. 996.
  13. Cremlyn R., Nunes R. // Phosphorus Sulfur Silicon Relat. Elem. 1987. V. 31. P. 245.
  14. Amirova A.I., Dudkina M.M., Tenkovtsev A.V., Filippov A.P. // Colloid Polym. Sci. 2015. V. 293. P. 239.
  15. Shimano Y., Sato K., Kobayashi S. // Polym. J. 1999. V. 31. № 3. P. 219.
  16. Weber C., Babiuch K.P., Rogers S., Perevyazko I., Hoogenboom R., Schubert U.S. // Polym. Chem. 2012. V. 3. № 10. P. 2976.
  17. Luef K.P., Hoogenboom R., Schubert U.S., Wiesbrock F. // Adv. Polym. Sci. 2015. V. 274. P. 183.
  18. Hoogenboom R., Fijten M.W.M., Schubert U.S. // J. Polym. Sci., Polym. Chem. 2004. V. 42. P. 1830.
  19. Hoogenboom R., Fijten M.W.M., Thijs H.M.L., van Lankvelt B.M., Schubert U.S. // Design. Monomers Polym. 2005. V. 8. P. 659.
  20. Wiesbrock F., Hoogenboom R., Leenen M.A.M., Meier M.A.R., Schubert U.S. // Macromolecules. 2005. V. 38. P. 5025.
  21. Bag S., Ghosh S., Paul S., Khan M.E.H., De P. // Macromol. Rapid Commun. 2021. V. 42. Р. 2100501.
  22. Nakayama Y., Smets G. // J. Polym. Sci., Polym. Chem. 1967. V. 5. P. 1619.
  23. Liu Q., Lv X., Li N., Pan X., Zhu J., Zhu X. // Polymer. 2018. V. 10. P. 321.
  24. Hill D.J.T., Shao L.Y., Pomery P.J., Whittaker A.K. // Polymer. 2001. V. 42. P. 4791.
  25. Mayo F.R., Lewis F.M. // J. Am. Chem. Soc. 1944. V. 66. № 9. P. 1594.
  26. Blokhin A.N., Kurlykin M.P., Razina A.B., Dudkina M.M., Ten’kovtsev A.V. // Polymer Science B. 2018. V. 60. № 4. P. 421.
  27. Weller D., McDaniel J.R., Fischer K., Chilkoti A., Schmidt M. // Macromolecules. 2013. V. 46. P. 4966.
  28. Oleszko N., Utrata-Wesołek A., Wałach W., Libera M., Hercog A., Szeluga U., Domański M., Trzebicka B., Dworak A. // Macromolecules. 2015. V. 48. № 6. P. 1852.
  29. Diab C., Akiyama Y., Kataoka K., Winnik F.M. // Macromolecules. 2004. V. 37. № 7. P. 2556.
  30. Kirila T.Yu., Razina A.B., Ten’kovtsev A.V., Filippov A.P. // Polymer Science C. 2022. V. 64. № 2. P. 211.

补充文件

附件文件
动作
1. JATS XML
2. Scheme 1

下载 (78KB)
3. Fig. 1. 1H NMR spectra of poly-2-isopropyl-2-oxazoline macromonomer (1) and poly-2-ethyl-2-oxazoline macromonomer (2). Colour figures can be viewed in the electronic version

下载 (258KB)
4. Fig. 2. 1H NMR spectrum of the initial polymerisation mixture of MM-1 and MM-2 macromonomers in chlorobenzene with monomer composition F1/F2 = 0.94. The signals of vinyl fragments CH (a1), CH2 (a2, a3), maleimide fragments CH (b) and hexamethyldisiloxane CH3 (c) are shown

下载 (144KB)
5. Fig. 3. Mayo-Lewis plots obtained for copolymerisation of MM-1 and MM-2 macromonomers. Triangular range of probable values of r1 and r2 (1). Full-size graph with the intersection of three linear dependences (2)

下载 (156KB)
6. Fig. 4. 1H NMR spectrum of the grafted copolymer sample

下载 (315KB)
7. Fig. 5. Fragment of 1H NMR spectra of samples 2 and 3 obtained in aqueous solutions

下载 (71KB)
8. Fig. 6. Chromatograms of polymer brush samples 1-3

下载 (100KB)

版权所有 © Russian Academy of Sciences, 2024