METAMORPHISM OF UNI SUITE AS AN INDICATOR OF EARLY PRECAMBRIAN COLLISION PROCESSES IN THE VYATKA BELT, BASEMENT OF THE VOLGA-URALIA
- Authors: Pilitsyna T.A.1,2, Erofeeva K.G.1, Samsonov A.V.1, Postnikov A.V.3, Varlamov D.A.4
- 
							Affiliations: 
							- Institute of Ore Geology, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences
- Institute of Mineralogy, Geochemistry and Crystal Chemistry of Rare Elements
- Gubkin Russian State University of Oil and Gas (National Research University)
- Korzhinsky Institute of Experimental Mineralogy, Russian Academy of Sciences
 
- Issue: Vol 510, No 1 (2023)
- Pages: 52-60
- Section: PETROLOGY
- Submitted: 30.01.2025
- Published: 01.05.2023
- URL: https://cardiosomatics.ru/2686-7397/article/view/649667
- DOI: https://doi.org/10.31857/S2686739722602836
- EDN: https://elibrary.ru/FEXQGG
- ID: 649667
Cite item
Abstract
In the central part of the Vyatka belt, sandwiched between the Archean blocks in the northeast of the Volga-Ural segment of the East European craton, according to the core data from two deep wells, the following mineral parageneses were established in the metapelites of the Uni suite: (1) Pl + Ms + Bt + Qz + Kfs + And ± Chl and (2) Pl + Bt + Qz + Kfs + Grt + Sil ± Ms ± Chl (without staurolite and cordierite), corresponding to moderate pressure metamorphism of the amphibolite facies. To determine the P-T conditions for these parageneses a set of methods was used, including classical (Grt-Bt, GASP, Ti-in-Bt, Ms-Bt) and multi-equilibrium thermobarometry (winTWQ 2.34), as well as the isopleth intersection method on pseudosection diagrams (GeoPS 3.2.2.128). The calculated P-T values of metamorphism are 520–650°C (or up to 690°C according to the isopleth method) and 2–5.4 kbar. Paragenesis (2) rock was accompanied by anatexis in the water-saturated system. Zoning can be distinguished in the metamorphism of the rocks, it belongs to a relatively shallow type, to the andalusite-sillimanite subfacies.
About the authors
T. A. Pilitsyna
Institute of Ore Geology, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences; Institute of Mineralogy, Geochemistry and Crystal Chemistry of Rare Elements
							Author for correspondence.
							Email: allafia@yandex.ru
				                					                																			                												                								Russian, Moscow; Russian, Moscow						
K. G. Erofeeva
Institute of Ore Geology, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences
														Email: allafia@yandex.ru
				                					                																			                												                								Russian, Moscow						
A. V. Samsonov
Institute of Ore Geology, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences
														Email: allafia@yandex.ru
				                					                																			                												                								Russian, Moscow						
A. V. Postnikov
Gubkin Russian State University of Oil and Gas (National Research University)
														Email: allafia@yandex.ru
				                					                																			                												                								Russian, Moscow						
D. A. Varlamov
Korzhinsky Institute of Experimental Mineralogy, Russian Academy of Sciences
														Email: allafia@yandex.ru
				                					                																			                												                								Russian, Moscow, Chernogolovka						
References
- Кристаллический фундамент Татарстана и проблемы нефтегазоносности. Муслимов Р.Х., Лапинская Т.А. (Ред.). Казань: “Дента”. 1996. 487 с.
- Ерофеева К.Г., Самсонов А.В., Спиридонов В.А. и др. Новый палеопротерозойский ороген на северо-востоке Восточно-Европейского кратона: первые данные по супракрустальным породам и гранитоидам Вятского пояса // М-лы XIII Всероссийского петрографического совещания. Иркутск: Изд-во Института географии им. В.Б. Сочавы СО РАН, 2021. Т. 1. С. 198–201.
- Bogdanova S.V., Gorbatschev R., Garetsky R.G. EUROPE. East European Craton // Reference Module in Earth Systems and Environmental Sciences. 2016. P. 1–18.
- Богданова С.В. Земная кора Русской плиты в раннем докембрии // Тр. ГИН АН СССР. 1986. Вып. 408. 224 с.
- Warr L. IMA-CNMNC approved mineral symbols // Mineralogical Magazine. 2021. P. 1–35.
- Spear F.S. Metamorphic phase equilibria and pressure-temperature-time paths. Washington DC: Mineralogical Society of America Monograph, 1993. 799 p.
- Holdaway M.J. Application of new experimental and garnet Margules data to the garnet-biotite geothermometer // American Mineralogist. 2000. V. 85. P. 881–892.
- Holdaway M.J. Recalibration of the GASP geobarometer in light of recent garnet and plagioclase activity models and versions of the garnet-biotite geothermometer // American Mineralogist. 2001. V. 86. P. 1117–1129.
- Wu C.-M., Chen H.-X. Revised Ti-in-biotite geothermometer for ilmenite- or rutile-bearing crustal metapelites // Science Bulletin. 2015. V. 60 (1).
- Hoisch D.A. Muscovite-biotite geothermometek // American Mineralogist. 1989. 74 (5–6). P. 565–572.
- Weinberg R.F., Hasalova P. Water-fluxed melting of the continental crust: A review // Lithos. 2015. V. 212–215. P. 158–188.
- Le Breton N., Thompson A.B. Fluid-absent (dehydration) melting of biotite in metapelites in the early stages of crustal anatexis // Contributions to Mineralogy and Petrology. 1988. V. 99. P. 226–237.
- Patiño Douce A.E. Effects of pressure and H2O content on the compositions of primary crustal melts // Transactions of the Royal Society of Edinburgh: Earth Sciences. 1996. 87. P. 11–21.
- Brown M. Prograde and retrograde processes in migmatites revisited // Journal of Metamorphic Geology. 2002. 20. P. 25–40.
- Johannes W., Holtz F. Petrogenesis and Experimental Petrology of Granitic Rocks. Minerals and Rocks 22. Springer, Berlin. 1996. P. 115–275.
- Velde B. Phengite micas: Synthesis, stability, and natural occurrence // Amer. J. Sci. 1965. V. 263. P. 886–913.
- Савко К., Самсонов А., Сальникова Е., Котов А., Базиков Н. HT/LP метаморфическая зональность восточной части Воронежского кристаллического массива: возраст, условия и геодинамическая обстановка формированиям // Петрология. 2015. Т. 23. № 6. С. 607–623.
- Лиханов И.И., Ревердатто В.В. Свидетельства полиметаморфической эволюции докембрийских геологических комплексов Заангарья Енисейского кряжа // Геосферные исследования. 2021. № 3. С. 19–4.
- Bushmin S.A., Glebovitsky V.A. Scheme of mineral facies of metamorphic rocks and its application to the Fennoscandian shield with representative sites of orogenic gold mineralization // Proceedings KarRC of Russian Academy of Science. №2. Precambrian Geology Series. 2016. p. 3–27.
- Burg J.P., Schmalhol S.M. Viscous heating allows thrusting to overcome crustal scale buckling: Numerical investigation with application to the Himalayan syntaxes // Earth Planet. Sci. Let. 2008. V. 274. P. 189–203.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					




