Perovskite-based solar cell in tamm plasmon-polariton structure
- Autores: Pykhtin D.A.1,2, Bikbaev R.G.1,2, Timofeev I.V.1,2, Vetrov S.Y.1,2, Shabanov V.F.1
- 
							Afiliações: 
							- L.V. Kirensky Institute of Physics, FRS KSC SB RAS
- Siberian Federal University
 
- Edição: Volume 514, Nº 1 (2024)
- Páginas: 29-33
- Seção: ФИЗИКА
- URL: https://cardiosomatics.ru/2686-7400/article/view/651808
- DOI: https://doi.org/10.31857/S2686740024010042
- EDN: https://elibrary.ru/OTTDCA
- ID: 651808
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The spectral properties of a solar cell with a photosensitive perovskite layer in a structure with a Tamm plasmon polariton localized at the boundary of a gold nanolattice and a one-dimensional photonic crystal are investigated. The influence of the parameters of the golden lattice on the surface current density and the efficiency of the proposed device is investigated. It is shown that when an aluminum substrate is replaced with a photonic crystal, a Tamm plasmon polariton is excited, which provides an increase in the surface current density by 33.7%, and efficiency by 35.1%.
Palavras-chave
Texto integral
 
												
	                        Sobre autores
D. Pykhtin
L.V. Kirensky Institute of Physics, FRS KSC SB RAS; Siberian Federal University
							Autor responsável pela correspondência
							Email: dmitry_pykhtin@iph.krasn.ru
				                					                																			                												                	Rússia, 							Krasnoyarsk; Krasnoyarsk						
R. Bikbaev
L.V. Kirensky Institute of Physics, FRS KSC SB RAS; Siberian Federal University
														Email: bikbaev@iph.krasn.ru
				                					                																			                												                	Rússia, 							Krasnoyarsk; Krasnoyarsk						
I. Timofeev
L.V. Kirensky Institute of Physics, FRS KSC SB RAS; Siberian Federal University
														Email: tiv@iph.krasn.ru
				                					                																			                												                	Rússia, 							Krasnoyarsk; Krasnoyarsk						
S. Vetrov
L.V. Kirensky Institute of Physics, FRS KSC SB RAS; Siberian Federal University
														Email: svetrov@sfu-kras.ru
				                					                																			                												                	Rússia, 							Krasnoyarsk; Krasnoyarsk						
V. Shabanov
L.V. Kirensky Institute of Physics, FRS KSC SB RAS
														Email: shabanov@ksc.krasn.ru
				                					                																			                								
Academician of the RAS
Rússia, KrasnoyarskBibliografia
- Шабанов В.Ф., Ветров С.Я. Оптика реальных фотонных кристаллов. Жидкокристаллические дефекты, неоднородности. Новосибирск: Издательство СО РАН, 2005. 209 с.
- Shahed-E-Zumrat, Shahid S., Talukder M.A. Dual-wavelength hybrid Tamm plasmonic laser // Optics Express. 2022. V. 30. № 14. P.25234. https://doi.org/10.1364/OE.456249
- Huang С., Wu С., Bikbaev R.G. Wavelength-and- Angle-Selective Photodetectors Enabled by Graphene Hot Electrons with Tamm Plasmon Polaritons // Nanomaterials. 2023. V. 13. № 4. P. 693. https://doi.org/10.3390/nano13040693
- Huang S., Chen K., Jeng S. Phase sensitive sensor on Tamm plasmon devices // Optical Materials Express. 2017. V. 7. № 4. P. 1267. https://doi.org/10.1364/OME.7.001267
- Kojima A., Teshima K., Shirai Y. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells // J. Amer. Chem. Soc. 2009. V. 131. № 17. P. 6050. https://doi.org/10.1021/ja809598r
- Sahli F., Werner J., Kamino B.A. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency // Nature Materials. 2018. V. 17. № 9. P. 820. https://doi.org/10.1038/s41563-018-0115-4
- Kaliteevski M., Iorsh I., Brand S. Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror // Phys. Rev. B. 76. 2007. P. 165415. https://doi.org/10.1103/PhysRevB.76.165415
- Bikbaev R.G., Vetrov S.Ya., Timofeev I.V. Tamm Plasmon Polaritons for Light Trapping in Organic Solar Cells // Doklady Physics. 2020. V. 65. № 5. P. 161. https://doi.org/
- Bikbaev R.G., Vetrov S.Ya., Timofeev I.V. Nanoparticle Shape Optimization for Tamm-Plasmon-Polariton-Based Organic Solar Cells in the Visible Spectral Range // Photonics. 2022. V. 9. № 11. P. 786. https://doi.org/10.3390/photonics9110786
- Taflove A., Hagness S. Computational electrodynamics. Norwood (MA): Artech House, 2005. 169 р.
- Haus H.A. Waves and Fields in Optoelectronics. Prentice-Hall series in solid state physical electronics. Old Tappan (NJ): Prentice Hall, 1983. 402 р.
- Sandhu S., Yu Z., Fan S. Detailed balance analysis of nanophotonic solar cells // Opt. Express 21. 2013. P. 1209–1217. https://doi.org/10.1364/OE.21.001209
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 




