Optical sensor based on nano-carbon

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The possibility of creating an optical sensor based on carbon nanoparticles used to amplify the Raman signal is discussed. Carbon nanotubes or graphene flakes can be used as reinforcement. This possibility is confirmed by the results of an experiment demonstrating the signal enhancement effect (SERS) when using carbon nanotubes. The possibility of using graphene flakes for this purpose is confirmed by experimental results indicating the presence of plasmonic oscillations in these objects, necessary for the implementation of the SERS effect.

全文:

受限制的访问

作者简介

G. Bocharov

National Research University “Moscow Power Engineering Institute”

Email: Eletskii@mail.ru
俄罗斯联邦, Moscow

A. Dedov

National Research University “Moscow Power Engineering Institute”

Email: Eletskii@mail.ru

Corresponding Member of the RAS

俄罗斯联邦, Moscow

A. Eletskii

National Research University “Moscow Power Engineering Institute”

编辑信件的主要联系方式.
Email: Eletskii@mail.ru
俄罗斯联邦, Moscow

M. Zverev

National Research University “Moscow Power Engineering Institute”

Email: Eletskii@mail.ru
俄罗斯联邦, Moscow

A. Sarychev

Institute of Theoretical and Applied Electrodynamics of the Russian Academy of Sciences

Email: Eletskii@mail.ru
俄罗斯联邦, Moscow

S. Fedorovich

National Research University “Moscow Power Engineering Institute”

Email: Eletskii@mail.ru
俄罗斯联邦, Moscow

参考

  1. Fleischmann M., Hendra P.J., McQuillan A.J. Raman Spectra of Pyridine Adsorbed at a Silver Electrode // Chemical Physics Letters. 1974. V. 26. №. 2. P. 163–166. https://doi.org/10.1016/0009-2614(74)85388-1
  2. Moskovits M. Surface-enhanced spectroscopy // Rev. Mod. Phys. 1985. V. 57. P. 783. https://doi.org/10.1103/RevModPhys.57.783
  3. Nabiev I.R., Efremov R.G., Chumanov G.D. Surface-enhanced Raman scattering and its application to the study of biological molecules // Sov. Phys. Usp. 1988. V. 31. P. 241–262. https://doi.org/10.1070/PU1988v031n03ABEH005720
  4. Pilot R., Signorini R., Durante C., Orian L., Bhamidipati M., Fabris L.A. Review on Surface-Enhanced Raman Scattering // Biosensors. 2019. V. 9. № 2. P. 57. https://doi.org/10.3390/bios9020057
  5. Bantz K.C., Meyer A.F., Wittenberg N.J., Im H., Kurtuluş Ö., Lee S.H., Lindquist N.C., Oh S.-H., Haynes C.L. Recent Progress in SERS Biosensing // Phys. Chem. Chem. Phys. 2011. V. 13. № . 24. P. 11551. https://doi.org/10.1039/c0cp01841d
  6. Nie S., Emory S.R. Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering // Science. 1997. V. 275. P. 1102. https://doi.org/10.1126/science.275.5303.1102
  7. Kneipp K., Wang Y., Kneipp H., Perelman L.T., Itzkan I., Dasari R.R., Feld M.S. Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) // Phys. Rev. Lett. 1997. V. 78. P. 1667. https://doi.org/10.1103/PhysRevLett.78.1667
  8. Eletskii A.V., Sarychev A.K., Boginskaya I.A., Bocharov G.S., Gaiduchenko I.A., Egin M.S., Ivanov A.V., Kurochkin I.N., Ryzhikov I.A., Fedorov G.E. Amplification of a Raman Scattering Signal by Carbon Nanotubes // Dokl. Phys. 2018. V. 63. P. 496–498. https://doi.org/10.1134/S1028335818120066
  9. Kukushkin V.I., Van’kov A.B., Kukushkin I.V. Long-range manifestation of surface-enhanced Raman scattering // Jetp Lett. 2013. V. 98. P. 64–69. https://doi.org/10.1134/S0021364013150113
  10. Afanas’ev V.P., Bocharov G.S., Gryazev A.S., Eletskii A.V., Kaplya P.S., Ridzel O.Yu. Reduced graphene oxide studied by X-ray photoelectron spectroscopy: evolution of plasmon mode // J. of Physics: Conf. Series. 2018. V. 1121. P. 012001. https://doi.org/10.1088/1742-6596/1121/1/012001

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Raman spectrum of water in the absence of CNTs (1); Raman spectrum of water in the presence of CNTs synthesized using type A catalyst (2); Raman spectra of water in the presence of CNTs synthesized using type B catalyst (3) [8].

下载 (36KB)
3. Fig. 2. Dependence of conductivity (1) and plasmon peak intensity (2) of thermally reduced graphene oxide on heat treatment temperature [10].

下载 (33KB)
4. Fig. 3. Schematic representation of the optical sensor configuration: 1 – optical waveguide; 2 – carbon nanoparticles; 3 – object under study; 4 – laser beam; 5 – scattered signal.

下载 (21KB)

版权所有 © Russian Academy of Sciences, 2025