О точности вычисления инвариантов внутри центрированных волн разрежения и в областях их влияния
- Авторы: Остапенко В.В.1, Полунина Е.И.1, Хандеева Н.А.1
- 
							Учреждения: 
							- Институт гидродинамики имени М.А. Лаврентьева Сибирского отделения Российской академии наук
 
- Выпуск: Том 518 (2024)
- Страницы: 65-74
- Раздел: МАТЕМАТИКА
- URL: https://cardiosomatics.ru/2686-9543/article/view/647998
- DOI: https://doi.org/10.31857/S2686954324040109
- EDN: https://elibrary.ru/YYRMQN
- ID: 647998
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
Проведен сравнительный анализ точности численных схем TVD (Total Variation Diminishing) второго порядка, RBM (Rusanov-Burstein-Mirin) третьего порядка и A-WENO (Alternative Weighted Essentially Non-Oscillatory) пятого порядка по пространству и третьего порядка по времени при расчете специальной задачи Коши для уравнений мелкой воды с разрывными начальными данными, точное решение которой содержит центрированную волну разрежения и не содержит ударную волну. Показано, что внутри центрированной волны разрежения и в области ее влияния решения всех трех схем с различными порядками сходятся к разным инвариантам точного решения, что приводит к снижению точности этих схем при вычислении вектора базисных переменных рассматриваемой задачи Коши. Для теоретического обоснования данных численных результатов применяется P-форма первого дифференциального приближения разностных схем.
Полный текст
 
												
	                        Об авторах
В. В. Остапенко
Институт гидродинамики имени М.А. Лаврентьева Сибирского отделения Российской академии наук
							Автор, ответственный за переписку.
							Email: ostigil@mail.ru
				                					                																			                												                	Россия, 							Новосибирск						
Е. И. Полунина
Институт гидродинамики имени М.А. Лаврентьева Сибирского отделения Российской академии наук
														Email: ekpolunina2014@gmail.com
				                					                																			                												                	Россия, 							Новосибирск						
Н. А. Хандеева
Институт гидродинамики имени М.А. Лаврентьева Сибирского отделения Российской академии наук
														Email: nzyuzina1992@gmail.com
				                					                																			                												                	Россия, 							Новосибирск						
Список литературы
- Ковыркина О.А., Остапенко В.В. О построении комбинированных разностных схем повышенной точности // Докл. АН. 2018. Т. 478. № 5. 517–522. https://doi.org/10.1134/S1064562418010246
- Cockburn B. An introduction to the discontinuous Galerkin method for convection-dominated problems, advanced numerical approximation of nonlinear hyperbolic equa-tions // Lect. Notes Math. 1998. V. 1697. 150–268. https://doi.org/10.1007/BFb0096353
- Куликовский А.Г., Погорелов Н.В., Семенов А.Ю. Математические вопросы численного решения гиперболических систем уравнений. М.: Физматлит, 2001.
- LeVeque R.J. Finite-volume methods for hyperbolic problems. Cambridge: Cambridge University Press, 2002. https://doi.org/10.1017/CBO9780511791253
- Toro E.F. Riemann solvers and numerical methods for fluid dynamics: a practical intro-duction. Berlin: Springer-Verlag Berlin Heidelberg, 2009.
- Hesthaven J.S. Numerical methods for conservation laws. // Computational Science and Engineering 18. SIAM, 2018. https://doi.org/10.1137/1.9781611975109
- Shu C.-W. Essentially non-oscillatory and weighted essentially non-oscillatory schemes // Acta Numer. 2020. V. 29. 701–762. https://doi.org/10.1017/S0962492920000057
- Gelb A., Tadmor E. Adaptive edge detectors for piecewise smooth data based on the minmod limiter // J. Sci. Comput. 2006. V. 28. 279–306. https://doi.org/10.1007/s10915-006-9088-6
- Guermond J.L., Pasquetti R., Popov B. Entropy viscosity method for nonlinear conservation laws // J. Comput. Phys. 2011. V. 230. 4248–4267. https://doi.org/10.1016/j.jcp.2010.11.043
- Dewar J., Kurganov A., Leopold M. Pressure-based adaption indicator for compressible Euler equations // Numer. Meth. Part. Diff. Eq. 2015. V. 31. № 6. 1844–1874. https://doi.org/10.1002/num.21970
- Брагин М.Д., Ковыркина О.А., Ладонкина М.Е., Остапенко В.В., Тишкин В.Ф., Хандеева Н.А. Комбинированные численные схемы // Ж. вычисл. матем. и матем. физ. 2022. Т. 62. № 11. 1763–1803. https://doi.org/10.1134/S0965542522100025
- Chu S., Kovyrkina O.A., Kurganov A., Ostapenko V.V. Experimental convergence rate study for three shock-capturing schemes and development of highly accurate com-bined schemes // Numer. Meth. Part. Diff. Eq. 2023. V. 39. № 6. 4317–4346. https://doi.org/10.1002/num.23053
- Ковыркина О.А., Остапенко В.В. О точности разностных схем при расчете центрированных волн разрежения // Матем. моделир. 2023. Т. 35. № 7. 83–96. https://doi.org/10.1134/S2070048223070104
- Годунов С.К. Разностный метод численного расчета разрывных решений уравнений гидродинамики // Матем. сборник. 1959. Т. 47. № 3. 271–306.
- Harten A. High resolution schemes for hyperbolic conservation laws // J. Comput. Phys. 1983. V. 49. № 3. 357–393. https://doi.org/10.1016/0021-9991(83)90136-5
- Jiang G.S., Shu C.-W. Efficient implementation of weighted ENO schemes // J. Com-put. Phys. 1996. V. 126. № 1. 202–228. https://doi.org/10.1006/jcph.1996.0130
- Русанов В.В. Разностные схемы третьего порядка точности для сквозного счёта разрывных решений // Докл. АН СССР. 1968. Т. 180. № 6. 1303–1305.
- Burstein S.Z., Mirin A.A. Third order difference methods for hyperbolic equations // J. Comput. Phys. 1970. V. 5. № 3. 547–571. https://doi.org/10.1016/0021-9991(70)90080-X
- Wang B.S., Don W.S., Garg N.K. and Kurganov N.K. Fifth-order A-WENO finite-difference schemes based on a new adaptive diffusion central numerical flux // SIAM J. Sci. Comput. 2020. V. 42. A3932–A3956. https://doi.org/10.1137/20M1327926
- Шокин Ю.И., Яненко Н.Н. Метод дифференциального приближения. Новосибирск: Наука, 1985.
- Ковыркина О.А., Курганов А.А., Остапенко В.В. Сравнительный анализ точности трех различных схем при расчете ударных волн // Матем. моделир. 2022. Т. 34. № 10. 43–64. https://doi.org/10.1134/S2070048223030092
- Ковыркина О.А., Остапенко В.В. О точности схемы типа MUSCL при расчете разрывных решений // Матем. моделир. 2021. Т. 33. № 1. 105–121. https://doi.org/10.1134/S2070048221050136
Дополнительные файлы
 
				
			 
						 
						 
						 
					 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 





