Phase Equilibria in the Al–Ga–As–Bi System at 900°C
- Authors: Khvostikov V.P.1, Khvostikova O.A.1, Potapovich N.S.1, Vlasov A.S.1
- 
							Affiliations: 
							- Ioffe Institute
 
- Issue: Vol 59, No 7 (2023)
- Pages: 721-725
- Section: Articles
- URL: https://cardiosomatics.ru/0002-337X/article/view/668207
- DOI: https://doi.org/10.31857/S0002337X23070084
- EDN: https://elibrary.ru/PWXNNJ
- ID: 668207
Cite item
Abstract
Solidus and liquidus isotherms in the Al–Ga–As–Bi system have been modeled for an initial epitaxy temperature of 900°C, which is needed for growing relatively thick (50–100 μm) compositionally graded AlxGa1–xAs layers. The theoretical isotherms have been confirmed by experimental data. It has been shown that, to grow relatively thick (>50 μm) AlGaAs layers, it is reasonable to use Ga–Bi mixed melts containing no more than 20 at % bismuth.
About the authors
V. P. Khvostikov
Ioffe Institute
														Email: vlkhv@scell.ioffe.ru
				                					                																			                												                								194021, St. Petersburg, Russia						
O. A. Khvostikova
Ioffe Institute
														Email: vlkhv@scell.ioffe.ru
				                					                																			                												                								194021, St. Petersburg, Russia						
N. S. Potapovich
Ioffe Institute
														Email: vlkhv@scell.ioffe.ru
				                					                																			                												                								194021, St. Petersburg, Russia						
A. S. Vlasov
Ioffe Institute
							Author for correspondence.
							Email: vlkhv@scell.ioffe.ru
				                					                																			                												                								194021, St. Petersburg, Russia						
References
- Хвостиков В.П., Покровский П.В., Хвостикова О.А., Паньчак А.Н., Андреев В.М. Высокоэффективные AlGaAs/GaAs фотоэлектрические преобразователи с торцевым вводом лазерного излучения // ПЖТФ. 2018. Т. 44. № 17. С. 42–48. https://doi.org/10.21883/PJTF.2018.17.46569.17400
- Panchak A., Khvostikov V., Pokrovskiy P. AlGaAs Gradient Waveguides for Vertical p/n Junction GaAs Laser Power Converters // Opt. Laser Technol. 2021. V. 136. P. 106735. https://doi.org/10.1016/j.optlastec.2020.106735
- Khvostikov V.P., Vlasov A.S., Pokrovskiy P.V., Khvostikova O.A., Panchak A.N., Marukhina E.P., Kalyuzhnyy N.A., Andreev V.M. Characterization of Ultra High Power Laser Beam PV Converters // AIP Conf. Proc. Morocco. 2019. V. 2149. P. 080003. https://doi.org/10.1063/1.5124213
- Khvostikov V.P., Panchak A.N., Khvostikova O.A., Pokrovskiy P.V. Side-Input GaAs Laser Power Converters with Gradient AlGaAs Waveguide // IEEE Electron Device Lett. 2022. V. 43. P. 1717–1719. https://doi.org/10.1109/LED.2022.3202987
- Zinovchuk V., Malyutenko O., Malyutenko V., Podoltsev A., Vilisov A. The Effect of Current Crowding on the Heat and Light Pattern in High-Power AlGaAs Light Emitting Diodes // J. Appl. Phys. 2008. V. 104. P. 033115. https://doi.org/10.1063/1.2968220
- Kitabayashi H., Ishihara K., Kawabata Y., Matsubara H., Miyahara K., Morishita T., Tanaka S. Development of Super High Brightness Infrared LEDs // SEI Tech. Rev. 2011. V. 72. P. 86–89.
- Zhao X., Montgomery K., Woodall J. Hall Effect Studies of AlGaAs Grown by Liquid-Phase Epitaxy for Tandem Solar Cell Applications // J. Electron. Mater. 2014. V. 43. № 11. P. 3999–4002. https://doi.org/10.1007/s11664-014-3340-x
- Якушева Н.А., Журавлев К.С., Шегай О.А. Об “очистке” арсенида галлия висмутом // ФТП. 1988. Т. 22. № 11. С. 2083–2086.
- Yakusheva N.A., Zhuravlev K.S., Chikichev S.I., Shegay O.A. Liquid Phase Epitaxial Growth of Undoped Gallium Arsenide from Bismuth and Gallium Melts // Cryst. Res. Technol. 1989. V. 24. № 2. P. 235–246. https://doi.org/10.1002/crat.2170240221.
- Бирюлин Ю.Ф., Воробьева В.В., Голубев В.Г. и др. Механизм “очистки” арсенида галлия висмутом // ФТП. 1987. Т. 21. № 12. С. 2201–2208.
- Saravanan S., Jeganathan K., Baskar K. et al. High Quality GaAs Epitaxial Layers Grown from Ga–As–Bi Solutions by Liquid Phase Epitaxy // Jpn. J. Appl. Phys. 1997. V. 36. № 6A. P. 3385–3388. https://doi.org/10.1143/JJAP.36.3385
- Антощенко В.С., Лаврищев Ю.В., Францев Ю.В., Антощенко Е.В. Расчет фазовой диаграммы системы Bi–Ga–Al–As // Вестн. КазНУ. Сер. физ. 2012. Т. 41. № 2. С. 8–13.
- Антощенко В.С., Францев Ю.В., Лаврищев Ю.В., Антощенко Е.В. Изучение фазового равновесия в пятикомпонентной системе Sn–Bi–Al–Ga–As // Вестник КазНУ. Сер. физ. 2013. Т. 44. № 1. С. 11–17.
- Panish M.B. Phase Equilibria in the System Al–Ga–As–Sn and Electrical Properties of Sn-Doped Liquid Phase Epitaxial AlxGa1–xAs // J. Appl. Phys. 1973. V. 44. P. 2667–2675. https://doi.org/10.1063/1.1662631
- Кейси Х., Паниш М. Лазеры на гетероструктурах. Т. 2. Глава 6. М.: Мир, 1981. С. 88–108.
- Jourdan A.S. Calculation of Phase Equilibria in the Ga-Bi and Ga-P-Bi Systems Based on a Theory of Regular Associated Solutions // Metall. Trans. B. 1976. V. 7. P. 191–201. https://doi.org/10.1007/BF02654917
- Hurle D.T.J. A Thermodynamic Analysis of Native Point Defect and Dopant Solubilities in Zinc-Blende III–V Semiconductors // J. Appl. Phys. 2010. V. 107. P. 121301. https://doi.org/10.1063/1.3386412
- Khvostikov V., Khvostikova O., Potapovich N., Vlasov A., Salii R. Estimation of Interaction Parameters in the Al–Ga–As–Sn–Bi System // Heliyon. 2023. V. 9. P. e18063. https://doi.org/10.1016/j.heliyon.2023.e18063
- Safarian J., Kolbeinsen L., Tangstad M. Liquidus of Silicon Binary Systems // Metall. Mater. Trans. B. 2011. V. 42. P. 852–874. https://doi.org/10.1007/s11663-011-9507-4
- Акчурин Р.Х., Ле Динь Као, Нишанов Д.Н., Фистуль В.И. Гетерогенные равновесия в квазибинарной системе Bi–GaAs // Изв. АН СССР. Неорган. материалы. 1986. Т. 22. № 1. С. 9–12.
- Milanova M., Terziyska P. Low-Temperature Liquid-Phase Epitaxy Growth from Ga–As–Bi Solution // Thin Solid Films. 2006. V. 500. P. 15–18. https://doi.org/10.1016/j.tsf.2005.10.049
- Panek M., Paszkiewicz R., Tlaczala M. et al. Liquid Phase Epitaxy (LPE) of GaAs from the Ga-Bi Solutions // Proc. SPIE. Optoelectron. Integrated Circuit Mater., Phys., Devices. 1995. V. 2397. P. 661–665. https://doi.org/10.1117/12.206913
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					



