Thin-Film Oxide Materials for Ozone Detection in Thermal Modulation Mode

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

This paper presents data on ozone detection. The purpose of this work was to find materials offering selectivity in analysis for ozone in air by examining the shape of the resistive response of some thin-film oxide semiconductor sensors operated in thermal modulation mode. For this purpose, thin Pd, Cd, Zn, and W metal layers were produced by sputter deposition on polycrystalline alumina (Al2O3) test structures with Pt electrodes for electrical resistance measurements. Next, the metallic layers were oxidized in air at a temperature of 550°C. The thickness of the resultant PdO, CdO, ZnO, and WO3 oxide films was ~30 nm. The resistive response of the thin-film PdO, CdO, ZnO, and WO3 oxide materials was measured in an ozone–air atmosphere in thermal modulation mode. The temperature of the sensors was varied sinusoidally between 50 and 300°C, and the ozone concentration in air was varied from 25 to 250 ppb. The use of thermal modulation made it possible to reveal differences in the shape of the response between the sensors at different ozone concentrations. The PdO sensor differs significantly in the shape of the resistive response from the other sensors. This characteristic feature of this material opens up the possibility of improving the selectivity of ozone detection with a PdO oxide sensor.

作者简介

S. Ryabtsev

Voronezh State University

Email: ftt@phys.vsu.ru
394018, Voronezh, Russia

N. Obvintseva

Moscow Institute of Steel and Alloys (National University of Science and Technology)

Email: ftt@phys.vsu.ru
119049, Moscow, Russia

D. Ghareeb

Voronezh State University

Email: ftt@phys.vsu.ru
394018, Voronezh, Russia

A. Al-Habeeb

Voronezh State University

Email: ftt@phys.vsu.ru
394018, Voronezh, Russia

A. Shaposhnik

Voronezh State Agrarian Universit

Email: ftt@phys.vsu.ru
394087, Voronezh, Russia

S. Turishchev

Voronezh State University

Email: ftt@phys.vsu.ru
394018, Voronezh, Russia

E. Domashevskaya

Voronezh State University

编辑信件的主要联系方式.
Email: barinovad@mpei.ru
Russia, 394006, Voronezh

参考

  1. Korotcenkov G., Brinzari V., Cho B.K. In2O3- and SnO2-Based Ozone Sensors: Design and Characterization // Crit. Rev. Solid State Mater. Sci. 2017. V. 43. № 2. P. 83. https://doi.org/10.1080/10408436.2017.1287661
  2. Korotcenkov G., Brinzari V., Cho B.K. In2O3 and SnO2-Based Ozone Sensors: Fundamentals // J. Sens. 2016. P. 816094. P. 31. https://doi.org/10.1155/2016/3816094
  3. Obvintseva L.A., Sharova T.B., Avetisov A.K., Sukhareva I.P. Semiconductor Sensors for Studying the Heterogeneous Destruction of Ozone at Low Concentrations // Russ. J. Phys. Chem. A. 2018. V. 92. № 6. P. 1099–1106. https://doi.org/10.1134/S0036024418060122
  4. Ryabtsev S.V., Ievlev V.M., Samoylov A.M., Kuschev S.B., Soldatenko S.A. Microstructure and Electrical Properties of Palladium Oxide Thin Films for Oxidizing Gases Detection // Thin Solid Films. 2017. V. 636. P. 751. https://doi.org/10.1016/j.tsf.2017.04.009
  5. Ryabtsev S.V., Shaposhnik A.V., Samoylov A.M., Sinelnikov A.A., Soldatenko S.A., Kuschev S.B., Ievlev V.M. Thin Films of Palladium Oxide for Gas Sensors // Dokl. Phys. Chem. 2016. V. 470. № 2. P. 158–161. https://doi.org/10.1134/S0012501616100055
  6. Ievlev V.M., Ryabtsev S.V., Samoylov A.M., Shaposhnik A.V., Kuschev S.B., Sinelnikov A.A. Thin and Ultrathin Films of Palladium Oxide for Oxidizing Gases Detection // Sens. Actuators, B. 2018. V. 255. № 2. P. 1335. https://doi.org/10.1016/j.snb.2017.08.121
  7. Ryabtsev S.V., Ghareeb D.A.A., Sinelnikov A.A., Turishchev S.Yu., Obvintseva L.A., Shaposhnik A.V. Ozone Detection by Means of Semiconductor Gas Sensors Based on Palladium(II) Oxide // Matter Interph. 2021. V. 23. № 1. P. 56–61. https://doi.org/10.17308/kcmf.2021.23/3303
  8. Рябцев С.В., Гхариб Д.А.А., Турищев С.Ю., Обвинцева Л.А., Шапошник А.В., Домашевская Э.П. Структурные и газочувствительные характеристики тонких полупроводниковых пленок PdO различной толщины при детектировании озона // ФТП. 2021. Т. 55. № 11. С. 1034–1039. https://doi.org/10.21883/FTP.2021.11.51557.9684
  9. Nakata S. Chemical Analysis Based on Nonlinearity. N. Y.: Nova Science Pub Inc., 2003. ISBN-13: 978-1590337370
  10. Nakata S., Takahara N. Distinction of Gaseous Mixtures Based on Different Cyclic Temperature Modulations // Sens. Actuators, B. 2022. V. 359. P. 131615–13621. https://doi.org/10.1016/j.snb.2022.131615
  11. Nakata S., Hashimoto T., Okunishi H. Evaluation of the Responses of a Semiconductor Gas Sensor to Gaseous Mixtures under the Application of Temperature Modulation // Analyst. 2003. V. 127. P. 1642. https://doi.org/10.1039/B208295K
  12. Nakata S., Kashima K. Distinction between Alcohols and Hydrocarbons with a Semiconductor Gas Sensor Depending on the Range and Frequency of a Cyclic Temperature // Anal. Methods. 2012. V. 4. P. 1126. https://doi.org/10.1039/c2ay05759j
  13. Рябцев С.В., Обвинцева Л.А., Гхариб Д.А.А., Аль-Хабиб А.А.К., Шапошник А.В., Домашевская Э.П. Cелективный анализ озона полупроводниковыми сенсорами PdO в режиме термомодуляции // Сорбционные и хроматографические процессы. 2021. Т. 21. № 6. С. 888–893. https://doi.org/10.17308/sorpchrom.2021.21/3835

补充文件

附件文件
动作
1. JATS XML
2.

下载 (77KB)
3.

下载 (82KB)
4.

下载 (118KB)
5.

下载 (96KB)
6.

下载 (137KB)
7.

下载 (135KB)

版权所有 © С.В. Рябцев, Н.Ю. Обвинцева, Д.А.А. Гхариб, А.А.К. Аль-Хабиб, А.В. Шапошник, С.Ю. Турищев, Э.П. Домашевская, 2023