Global stabilization of a chain of two integrators by a feedback in the form of nested sigmoids
- Authors: Morozov Y.V.1, Pesterev A.V.1
- 
							Affiliations: 
							- V. A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences
 
- Issue: No 3 (2024)
- Pages: 5-10
- Section: ТЕОРИЯ СИСТЕМ И ОБЩАЯ ТЕОРИЯ УПРАВЛЕНИЯ
- URL: https://cardiosomatics.ru/0002-3388/article/view/676410
- DOI: https://doi.org/10.31857/S0002338824030016
- EDN: https://elibrary.ru/URCEUP
- ID: 676410
Cite item
Abstract
The problem of stabilizing a chain of two integrators by a feedback in the form of nested sigmoids is considered. Such a feedback allows one to easily take into account boundedness of the control resource and ensure the fulfillment of desired characteristics of the transient process, such as a given exponential rate of the deviation decrease near the equilibrium state and the constraint on the maximum velocity. Global stability of the closed-loop system is proved by constructing its Lyapunov function.
Full Text
 
												
	                        About the authors
Yu. V. Morozov
V. A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences
							Author for correspondence.
							Email: tot1983@inbox.ru
				                					                																			                												                	Russian Federation, 							Moscow						
A. V. Pesterev
V. A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences
														Email: alexanderpesterev.ap@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow						
References
- Kurzhanski A.B., Varaiya P. Solution Examples on Ellipsoidal Methods: Computation in High Dimensions. Cham, Switzerland: Springer, 2014.
- Teel A.R. Global Stabilization and Restricted Tracking for Multiple Integrators with Bounded Controls // Sys. & Cont. Lett. 1992. V. 18. № 3. P. 165–171.
- Teel A.R. A Nonlinear Small Gain Theorem for the Analysis of Control Systems with Saturation // Trans. Autom. Contr., IEEE, 1996. V. 41. № 9. P. 1256–1270.
- Morozov Yu.V., Pesterev A.V. Глобальная устойчивость гибридной аффинной системы 4-го порядка // Изв. РАН. ТиСУ. 2023. № 5. С. 3–15.
- Hua M.-D., Samson C. Time Sub-optimal Nonlinear Pi and Pid Controllers applied to Longitudinal Headway Car Control // Int. J. Control. 2011. V. 84. P. 1717–1728.
- Olfati-Saber R. Nonlinear Control of Underactuated Mechanical Systems with Application to Robotics and Aerospace Vehicles, Ph.D. Dissertation, Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science, 2001.
- Pesterev A.V., Morozov Yu.V., Matrosov I.V. On Optimal Selection of Coefficients of a Controller in the Point Stabilization Problem for a Robot-wheel // Communicat. Comput. Inform. Sci. (CCIS). 2020. V. 1340. P. 236–249.
- Pesterev A.V., Morozov Yu.V. Optimizing Coefficients of a Controller in the Point Stabilization Problem for a Robot-wheel // Lect. Notes Comput. Sci. 2021. V. 13078. P. 191–202.
- Pesterev A.V., Morozov Yu.V. The Best Ellipsoidal Estimates of Invariant Sets for a Third-Order Switched Affine System // Lect. Notes Comput. Sci. 2022. V. 13781. P. 66–78.
- Пестерев А.В. Глобальная устойчивость аффинной системы второго порядка с переключениями // АиТ. 2023. № 9. С. 95–105.
- Барбашин Е.А. Введение в теорию устойчивости. Серия: Физико-математическая библиотека инженера. М.: Наука, 1967.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted


