Machine learning models to automatically discover novel functional patterns in multivariate time series
- Autores: Maysuradze A.I.1, Sidorov L.S.1
- 
							Afiliações: 
							- Lomonosov Moscow State University
 
- Edição: Nº 6 (2024)
- Páginas: 135-143
- Seção: ARTIFICIAL INTELLIGENCE
- URL: https://cardiosomatics.ru/0002-3388/article/view/683142
- DOI: https://doi.org/10.31857/S0002338824060106
- EDN: https://elibrary.ru/subtil
- ID: 683142
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
In this paper, we propose a method and a specific architecture for a machine learning model that assists researchers across various fields in automatically identifying functional patterns in multivariate time series from a series of experiments. The initial problem was formalized in terms of machine learning, eliminating the need for researchers to be experts in the specific subject matter under examination. The effectiveness of the method has been demonstrated in the field of neurophysiology with data where the existence of the P300 pattern is already known. For further research, it would be beneficial to generalize the proposed method to other areas, such as sensor data from production lines or banking transactions.
Palavras-chave
Sobre autores
A. Maysuradze
Lomonosov Moscow State University
							Autor responsável pela correspondência
							Email: maysuradze@cs.msu.ru
				                					                																			                												                	Rússia, 							Moscow						
L. Sidorov
Lomonosov Moscow State University
														Email: leon.sidorov@gmail.com
				                					                																			                												                	Rússia, 							Moscow						
Bibliografia
- Blankertz B., Muller K.R., Krusienski D.J., Schalk G., Wolpaw J.R., Schlogl A., et al. The BCI Competition iii: Validating Alternative Approaches to Actual BCI Problems // IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2006. V. 14 (2). P. 153–159.
- Oktay O., Schlemper J., Folgoc L.L., Lee M., Heinrich M., Misawa K. et. al. Attention U-Net: Learning Where to Look for the Pancreas // arXiv preprint arXiv:1804.03999, 2018.
- Lee H., Yune S., Mansouri M., Kim M., Tajmir S.H., Guerrier C.E. et. al. An Explainable Deep-learning Algorithm for the Detection of Acute Intracranial Haemorrhage from Small Datasets // Nature Biomedical Engineering. 2019. V. 3 (3). P. 173–182.
- Ardila D., Kiraly A.P., Bharadwaj S., Choi B., Reicher J.J., Peng L. et. al. End-to-end Lung Cancer Screening with Three-dimensional Deep Learning on Low-dose Chest Computed Tomography // Nature Medicine. 2019. V. 25 (6). P. 954–961.
- Sundararajan M., Taly A., Yan Q. Axiomatic Attribution for Deep Networks // Intern. Conf. on Machine Learning. PMLR. Sydney, Australia, 2017. P. 3319–3328.
- Caicedo-Torres W., Gutierrez J. ISeeU: Visually Interpretable Deep Learning for Mortality Prediction Inside the ICU // J. Biomedical Informatics. 2019. V. 98. P. 103269.
- Guo H., Kruger U., Wang G., Kalra M.K., Yan P. Knowledge-based Analysis for Mortality Prediction from CT Images // IEEE Biomedical and Health Informatics. 2019. V. 24 (2). P. 457–464.
- Van der Maaten L., Hinton G. Visualizing Data Using t-SNE // J. Machine Learning Research. 2008. V. 9(11).
- Cecotti H., Graser A. Convolutional Neural Networks for P300 Detection with Application to Brain-computer Interfaces // IEEE Transactions on Pattern Analysis and Machine Intelligence. 2010. V. 33 (3). P. 433–445.
- Vaswani A., Shazeer N., Parmar N., Uszkoreit J., Jones L. et al. Attention is All you Need // Advances in Neural Information Processing Systems. 2017. V. 30.
- Krizhevsky A., Sutskever I., Hinton G. E. Imagenet Classification with Deep Convolutional Neural Networks // Advances in Neural Information Processing Systems. 2012. V. 25.
- Squires N.K., Squires K.C., Hillyard S.A. Two Varieties of Long-latency Positive Waves Evoked by Unpredictable Auditory Stimuli in Man // Electroencephalography and Clinical Neurophysiology. 1975. V. 38 (4). P. 387–401.
- Schalk G., McFarland D.J., Hinterberger T., Birbaumer N., Wolpaw J.R. BCI2000: A General-purpose Brain-computer Interface (BCI) System // IEEE Transactions on Biomedical Engineering. 2004. V. 51 (6). P. 1034–1043.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 
