On oscillations of a quadrotor-slung pendulum with a cavity partially filled with liquid
- Autores: Holub A.P.1, Lokshin B.Y.1, Selyutskiy Y.D.1
- 
							Afiliações: 
							- Lomonosov Moscow State University
 
- Edição: Nº 2 (2025)
- Páginas: 166-176
- Seção: РОБОТОТЕХНИКА
- URL: https://cardiosomatics.ru/0002-3388/article/view/684540
- DOI: https://doi.org/10.31857/S0002338825020117
- EDN: https://elibrary.ru/ASUBJR
- ID: 684540
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Dynamics of a pendulum suspended to a quadrotor and having a spherical cavity partially filled with the ideal liquid is considered. It is supposed that the system moves in the vertical plane. The drag force acting on the pendulum is taken into account. In order to simulate oscillations of the liquid inside the cavity, a phenomenological “pendulum” model is used. An algorithm for constructing the quadrotor acceleration control is proposed that ensures the transition of the system to the steady horizontal flight with the specified speed along with damping of oscillations of both the pendulum and the liquid inside it (including in the presence of a constant wind).
Palavras-chave
Texto integral
 
												
	                        Sobre autores
A. Holub
Lomonosov Moscow State University
														Email: seliutski@imec.msu.ru
				                					                																			                								
Institute of Mechanics
Rússia, MoscowB. Lokshin
Lomonosov Moscow State University
														Email: seliutski@imec.msu.ru
				                					                																			                								
Institute of Mechanics
Rússia, MoscowYu. Selyutskiy
Lomonosov Moscow State University
							Autor responsável pela correspondência
							Email: seliutski@imec.msu.ru
				                					                																			                								
Institute of Mechanics
Rússia, MoscowBibliografia
- Omar H.M., Akram R., Mukras S.M.S., Mahvouz A.A. Recent Advances and Challenges in Controlling Quadrotors with Suspended Loads // Alexandria Engineering J. 2022. V. 63. P. 253-270. https://doi.org/10.1016/j.aej.2022.08.001
- Estevez J., Garate G., Lopez-Guede J.M., Larrea M. Review of Aerial Transportation of Suspended-Cable Payloads with Quadrotors // Drones. 2024. V. 8. № 2. P. 35. https://doi.org/10.3390/drones8020035
- Xian B., Wang S., Yang S. An Online Trajectory Planning Approach for a Quadrotor UAV with a Slung Payload // IEEE Trans. Ind. Electron. 2019. V. 67. P. 6669–6678. https://doi.org/10.1109/TIE.2019.2938493
- De Angelis E.L., Giulietti F., Pipeleers G. Two-Time-Scale Control of a Multirotor Aircraft for Suspended Load Transportation // Aerosp. Sci. Technol. 2019. V. 84. P. 193–203. https://doi.org/10.1016/j.ast.2018.10.012
- Sun L., Wang K., Mishamandani A.H.A., Zhao G., Huang H., Zhao X., Zhang B. A Novel Tension-Based Controller Design for the Quadrotor-Load System // Control Eng. Pract. 2021. V. 112. P. 104818.
- Baraean A., Hamanah W.M., Bawazir A., Quama M.M., El-Ferik S., Baraean S., Abido A.M. Optimal Nonlinear Backstepping Controller Design of a Quadrotor-Slung Load System Using Particle Swarm Optimization // Alexandria Engineering J. 2023. V. 68. P. 551–560. https://doi.org/10.1016/j.aej.2023.01.050
- Kong L., Reis J., He W., Yu X., Silvestre C. On Dynamic Performance Control for a Quadrotor-Slung-Load System with Unknown Load Mass // Automatica. 2024. V. 162. P. 111516. https://doi.org/10.1016/j.automatica.2024.111516
- Goodarzi F.A., Lee D., Lee T. Geometric Control of a Quadrotor UAV Transporting a Payload Connected via Flexible Cable // Int. J. Control. Autom. Syst. 2015. V. 13. P. 1486–1498. https://doi.org/10.1007/s12555-014-0304-0
- Chang P., Yang S., Tong J., Zhang F. A New Adaptive Control Design for a Quadrotor System with Suspended Load by an Elastic Rope // Nonlinear Dyn. 2023. V. 111. P. 19073–19092.
- Kaya U.C., Subbarao K. Momentum Preserving Simulation of Cooperative Multirotors with Flexible-Cable Suspended Payload // J. Dyn. Syst. Meas. Control. 2022. V. 144. P. 041007. https://doi.org/10.1115/1.4053343
- Wu P.X., Yang C.C., Cheng T.H. Cooperative Transportation of UAVs Without Inter-UAV Communication // IEEE/ASME Trans. Mechatron. 2023. V. 28. P. 2340–2351. https://doi.org/10.1109/TMECH.2023.3234511
- Bisgaard M., Bendtsen J.D., La Cour-Harbo A. Modeling of Generic Slung Load System // J. Guid. Control. Dyn. 2009. V. 32. № 2. P. 433–449. https://doi.org/10.2514/1.36539
- Куликов В.Е., Чукаева А.Н. Система управления квадрокоптером при транспортировке груза на внешней подвеске // Тр. Московск. ин-та электромеханики и автоматики. 2016. Т. 14. С. 2–16.
- Sun L., Wang K., Mishamandani A.H.A., Zhao G., Huang H., Zhao X., Zhang B. A Novel Tension-Based Controller Design for the Quadrotor–Load System // Control Eng. Pract. 2021. V. 112. P. 104818.
- Голуб А.П., Зудов В.Б., Локшин Б.Я., Селюцкий Ю.Д. О робастной стабилизации движения квадрокоптера с подвешенным грузом // Мехатроника, автоматизация, управление. 2024. Т. 25. № 9. С. 490–500. https://doi.org/10.17587/mau.25.490-500
- Охоцимский Д.Е. К теории движения тел с полостями, частично заполненными жидкостью // ПММ. 1956. Т. 20. Вып. 1. С. 3–20.
- Abramson H.N., Chu W.H., Ransleben G.E. Representation of Fuel Sloshing in Cylindrical Tanks by an Equivalent Mechanical Model // ARS Journal. 1961. V. 31. № 12. P. 1697–1705.
- Колесников К.С. Колебания жидкости в цилиндрическом сосуде. М.: Изд-во МВТУ им. Н.Э. Баумана, 1964. 97 с.
- Stofan A.J., Armstead A.L. Analytical and Experimental Investigation of Forces and Frequencies Resulting from Liquid Sloshing in a Spherical Tank. Washington: NASA. 1962. Technical Note D-1281.
- Abramson H.N., Chu W.H., Garza L.R. Liquid Sloshing in Spherical Tanks // AIAA Journal. 1963. V. 1. № 2. P. 384–389. https://doi.org/10.2514/3.1542
- Chu W.H. Fuel Sloshing in a Spherical Tank Filled to an Arbitrary Depth // AIAA Journal. 1964. V. 2. № 11. P. 1972–1979. https://doi.org/10.2514/3.2713
- Aliabadi S., Johnson A., Abedi J. Comparison of Finite Element and Pendulum Models for Simulation of Sloshing // Computers & Fluids. 2003. V. 32. № 4. P. 535–545. https://doi.org/10.1016/S0045-7930(02)00006-3
- Godderidge B., Turnock S.R., Tan M. A Rapid Method for the Simulation of Sloshing Using a Mathematical Model Based on the Pendulum Equation // Computers & Fluids. 2012. V. 57. P. 163–171. https://doi.org/10.1016/j.compfluid.2011.12.018
- Moriello L., Biagiotti L., Melchiorri C., Paoli A. Manipulating Liquids with Robots: A Sloshing-Free Solution // Control Engineering Practice. 2018. V. 78. P. 129–141. https://doi.org/10.1016/j.conengprac.2018.06.018
- Sayyaadi H., Soltani A. Modeling and Control for Cooperative Transport of a Slung Fluid Container Using Quadrotors // Chinese J. of Aeronautics. 2018. V. 31. № 2. P. 262–272. https://doi.org/10.1016/j.cja.2017.12.005
- Колесников К.С. Динамика ракет. М.: Машиностроение. 1980. 376 с.
- Ibrahim R.A. Liquid Sloshing Dynamics. Theory and Applications. Cambridge, 2005. 972 p.
- Квакернаак Х., Сиван Р. Линейные оптимальные системы управления. М.: Мир, 1977. 650 с.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 




