Гибритный метод анализа изображений на основе технологий искусственного интеллекта и нечетких множеств
- Авторы: Аверкин А.Н.1, Волков Е.Н.1, Ярушев С.А.1
- 
							Учреждения: 
							- Российский экономический университет им. Г.В. Плеханова
 
- Выпуск: № 3 (2025)
- Страницы: 99-112
- Раздел: ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ
- URL: https://cardiosomatics.ru/0002-3388/article/view/688345
- DOI: https://doi.org/10.31857/S0002338825030103
- EDN: https://elibrary.ru/BGWQJU
- ID: 688345
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
Рассматривается разработка прототипа гибридной интеллектуальной системы для анализа изображений на примере задачи диагностики и стадирования диабетической ретинопатии – осложнения сахарного диабета, характеризующееся повреждением сосудов сетчатки глаза. В результате хронически повышенного уровня глюкозы в крови происходит нарушение микроциркуляции, что вызывает развитие микроаневризм, экссудации, кровоизлияний и в тяжелых случаях неоваскуляризации. Это может привести к ухудшению зрения и в конечном итоге к слепоте при отсутствии своевременного лечения. Выявление и стадирование заболевания происходит с помощью анализа фотографических изображений глазного дна (фундус-снимков). Проведен обзор по теме исследования, рассмотрены преимущества гибридных интеллектуальных систем в сравнении с решениями, основанными на применение одной технологии. Описаны шаги создания системы, сочетающей в себе совместное использование классических методов компьютерного зрения, искусственных нейронных сетей, элементов теории нечеткой логики и методов объяснительного искусственного интеллекта. С помощью комбинированной архитектуры программного решения удалось добиться гибкости в вопросах применимости критериев стадирования заболевания, что говорит о широких перспективах подобного решения в диагностике иных заболеваний с логически формализуемыми критериями.
Полный текст
 
												
	                        Об авторах
А. Н. Аверкин
Российский экономический университет им. Г.В. Плеханова
							Автор, ответственный за переписку.
							Email: averkin2003@inbox.ru
				                					                																			                												                	Россия, 							Москва						
Е. Н. Волков
Российский экономический университет им. Г.В. Плеханова
														Email: averkin2003@inbox.ru
				                					                																			                												                	Россия, 							Москва						
С. А. Ярушев
Российский экономический университет им. Г.В. Плеханова
														Email: averkin2003@inbox.ru
				                					                																			                												                	Россия, 							Москва						
Список литературы
- Volkov E.N., Averkin A.N. Explainable Artificial Intelligence in Medical Image Analysis: State of the Art and Prospects // XXVI Intern. Conf. on Soft Computing and Measurements (SCM). IEEE, 2023. P. 134–137. https://doi.org/10.1109/SCM58628.2023.10159033
- Averkin A.N., Volkov E.N., Yarushev S.A. Possibilities of application of neuro-fuzzy networks for ophthalmologic image classification // Pattern Recognition Image Analysis. 2024. V. 34. № 3. P. 610–616. https://doi.org/10.1134/S1054661824700421
- Averkin A.N., Volkov E.N., Yarushev S.A. Explainable artificial intelligence in deep learning neural nets-based digital images analysis //J. Comp. Systems Sci. Int. 2024. V. 63. № 1. P. 175–203. https://doi.org/10.1134/S1064230724700138
- Рыжов А.П. О качестве классификации объектов на основе нечетких правил // Интеллектуальные системы. 2005. Т. 9. С. 253–264.
- Krzywicki T., Brona P., Zbrzezny A.B. et al. A global review of publicly available datasets containing fundus images: characteristics, barriers to access, usability, and generalizability //J. Clin. Med. 2023. V. 12. № 10. P. 3587. https://doi.org/10.3390/jcm12103587
- Jha D., Smedsrud P.H., Riegler M.A. et al. Resunet++: an advanced architecture for medical image segmentation // IEEE Intern. Sympos. Multimedia (ISM). 2019. P. 225–2255.
- Van der Velden B.H.M., Kuijf B.H., Gilhuijs H.J. et al. Explainable artificial intelligence (XAI) in deep learning-based medical image analysis // Med. Image Analysis. 2022. V. 79. P. 102470. https://doi.org/10.1016/j.media.2022.102470
- Qian J., Li H., Wang J. et al. Recent advances in explainable artificial intelligence for magnetic resonance imaging // Diagnostics. 2023. V. 13. № 9. P. 1571. https://doi.org/10.3390/diagnostics13091571
- Volkov E.N., Averkin A.N. Possibilities of explainable artificial intelligence for glaucoma detection using the LIME method as an example // XXVI Intern. Conf. on Soft Computing and Measurements (SCM). IEEE: Saint-Petersburg, 2023. P. 130–133. https://doi.org/10.1109/SCM58628.2023.10159038
- Saeed W., Omlin C. Explainable Ai (Xai): a systematic meta-survey of current challenges and future opportunities // Knowledge-Based Systems. 2023. V. 263. P. 110273. https://doi.org/10.1016/j.knosys.2023.110273
- Clement T., Kemmerzell N., Abdelaal M. et al. XAIR: a systematic metareview of explainable AI (XAI) aligned to the software development process // Mach. Lear. Knowledge Extraction. 2023. V. 5. № 1. P. 78–108. https://doi.org/10.3390/make5010006
- Selvaraju R.R., Cogswell M., Das A. et al. Grad-cam: visual explanations from deep networks via gradient-based localization // Proc. IEEE Intern. Conf. on Computer Vision. Venice, 2017. P. 618–626.
- Zhou B., Khosla A., Lapedriza A. et al. Learning deep features for discriminative localization // Proc. IEEE Conf. on Computer Vision and Pattern Recognition. Las Vegas, 2016. P. 2921–2929.
- Cheng B., Girshick R., Dollar P. et al. Boundary IoU: improving object-centric image segmentation evaluation // Proc. IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Nashville, USA. 2021. P. 15334–15342.
- Zhao R., Qian B., Zhang X. et al. Rethinking dice loss for medical image segmentation // IEEE Intern. Conf. on Data Mining (ICDM). Sorrento, Italy. IEEE, 2020. P. 851–860. https://doi.org/10.1109/ICDM50108.2020.00094
- Hehn T., Kooij J., Gavrila D. Fast and compact image segmentation using instance stixels // IEEE Transactions on Intelligent Vehicles. 2021. V. 7. № 1. P. 45–56. https://doi.org/10.1109/TIV.2021.3067223
Дополнительные файлы
 
				
			 
						 
						 
						 
					 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 












