On the possibility of studying the effect of magnetic reconnection in a laboratory astrophysical experiment using X-ray emission L-spectra of multiply charged ions

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The paper considers the application of X-ray spectroscopy with high spatial resolution for investigation of magnetic reconnection in laboratory astrophysical experiments carried out on laser facilities of nano- and pico-second duration at moderate laser intensity on the target <1018 W/cm2. A brief overview of commonly used experimental schemes is given. We present atomic kinetic calculations for the spectra from the L-shells of Ne- and F-like iron ions (Fe, Z = 26), which demonstrate the high sensitivity of the spectra to changes in plasma parameters. An analysis of the range of applicability of various diagnostic approaches to assessing the electron temperature and laser plasma density is carried out. It is shown that transition lines in Ne-like ions are a universal tool for measuring plasma parameters, both in the region of laser interaction with the target and in the reconnection zone.

作者简介

М. Alkhimova

Joint Institute for High Temperature of RAS

编辑信件的主要联系方式.
Email: maryalkhimova@ihed.ras.ru
俄罗斯联邦, Moscow

S. Makarov

Joint Institute for High Temperature of RAS

Email: maryalkhimova@ihed.ras.ru
俄罗斯联邦, Moscow

I. Skobelev

Joint Institute for High Temperature of RAS

Email: maryalkhimova@ihed.ras.ru
俄罗斯联邦, Moscow

S. Ryazantsev

Joint Institute for High Temperature of RAS

Email: maryalkhimova@ihed.ras.ru
俄罗斯联邦, Moscow

E. Filippov

Joint Institute for High Temperature of RAS

Email: maryalkhimova@ihed.ras.ru
俄罗斯联邦, Moscow

参考

  1. G. H. Miller, Opt. Eng. 43, 2841 (2004).
  2. N. Fleurot, C. Cavailler, J. L. Bourgade, Fusion Eng. Des. 74, 147–154 (2005).
  3. S. G. Garanin, F. A. Starikov, R. A. Shnyagin, Opt. Spectrosc. 114, 851–858 (2013).
  4. M. Yamada, R. Kulsrud, H. Ji, Rev. Mod. Phys. 82, 603–664 (2010).
  5. P. Helander, L.-G. Eriksson, F. Andersson, Plasma Phys. Control. Fusion. 44, B247–B262 (2002).
  6. J. T. Gosling, Space Sci. Rev. 172, 187–200 (2012).
  7. Somov B. V., Plasma Astrophysics, Part II: Reconnection and Flares (Springer, 2006).
  8. M. Bárta, M. Karlický, R. Žemlička, Sol. Phys. 253, 173–189 (2008).
  9. X. Cheng, J. Zhang, Y. Liu, M. D. Ding, Astrophys. J. 732, L25 (2011).
  10. X. Cheng, Y. Li, L. F. Wan, M. D. Ding, P. F. Chen, J. Zhang, J. J. Liu, Astrophys. J. 866, 64 (2018).
  11. P. Pagano, D. H. Mackay, S. Poedts, Astron. and Astrophys. 554, A77 (2013).
  12. J. Lin, Y. ‐K. Ko, L. Sui, J. C. Raymond, G. A. Stenborg, Y. Jiang, S. Zhao, S. Mancuso, Astrophys. J. 622, 1251–1264 (2005).
  13. L. K. S. Daldorff, J. E. Leake, J. A. Klimchuk, Astrophys. J. 927, 196 (2022).
  14. А.Retinò, D. Sundkvist, A. Vaivads, F. Mozer, M. André, C. J. Owen, Nat. Phys. 3, 235–238 (2007).
  15. P. Louarn, N. Andre, C. M. Jackman, S. Kasahara, E. A. Kronberg, M. F. Vogt, Space Sci. Rev. 187, 181–227 (2015).
  16. J. Varela, V. Réville, A. S. Brun, P. Zarka, F. Pantellini, Astron. and Astrophys. 616, A182 (2018).
  17. V. Semenov, S. Dyadechkin, B. Punsly, Science 80, 305, 978–980 (2004).
  18. Y. Lyubarsky, Astrophys. J. 897, 1 (2020).
  19. M. Lyutikov, Monthly Not. Roy. Astron. Soc. 346, 540–554 (2003).
  20. M. Hesse, P. A. Cassak, J. Geophys. Res. Sp. Phys., in press, doi: 10.1029/2018JA025935.
  21. C. T. Russell, M. A. Saunders, J. L. Phillips, J. A. Fedder, J. Geophys. Res. 91, 1417 (1986).
  22. O. Price, G. H. Jones, J. Morrill, M. Owens, K. Battams, H. Morgan, M. Drückmuller, S. Deiries, Icarus 319, 540–557 (2019).
  23. Л. В. Франк, А.Г., Артемьев, А.В., Зеленый, ЖЭТФ 150, 807–825 (2016).
  24. S. Y. Bogdanov, G. V. Dreǐden, V. S. Markov, G. V. Ostrov-skaya, A. G. Frank, Plasma Phys. Reports 32, 1034–1046 (2006).
  25. N. Katz, J. Egedal, W. Fox, A. Le, J. Bonde, A. Vrublevskis, Phys. Rev. Lett. 104, 255004 (2010).
  26. W. Fox, F. Sciortino, A. v. Stechow, J. Jara-Almonte, J. Yoo, H. Ji, M. Yamada, Phys. Rev. Lett. 118, 125002 (2017).
  27. J. D. Hare, L. Suttle, S. V. Lebedev, N. F. Loureiro, et L., Phys. Rev. Lett. 118, 085001 (2017).
  28. А.Ishizawa, R. Horiuchi, Phys. Rev. Lett. 95, 045003 (2005).
  29. M. Hesse, T. Neukirch, K. Schindler, M. Kuznetsova, S. Zenitani, Space Sci. Rev. 160, 3–23 (2011).
  30. S. V Bulanov, Plasma Phys. Control. Fusion. 59, 014029 (2017).
  31. K. Burdonov, A. Fazzini, V. Lelasseux, J. Albrecht, et al., Matter Radiat. Extrem. 6, doi: 10.1063/5.0065138 (2021).
  32. А. Г. Франк, Успехи физических наук. 53, 941–947 (2010).
  33. Y. H. Liu, P. Cassak, X. Li, M. Hesse, S. C. Lin, K. Genestreti, Commun. Phys. 2022 51, 5, 1–9 (2022).
  34. J. Qiu, W. Liu, N. Hill, M. Kazachenko, Astrophys. J. 725, 319–330 (2010).
  35. K. J. Trattner, J. S. Mulcock, S. M. Petrinec, S. A. Fuselier, Geophys. Res. Lett. 34, L03108 (2007).
  36. M. Yamada, J. Yoo, J. Jara-Almonte, H. Ji, R. M. Kulsrud, C. E. Myers, Nat. Commun. 5, doi: 10.1038/ncomms5774 (2014).
  37. É. Falize, C. Michaut, S. Bouquet, Astrophys. J. 730, 96 (2011).
  38. L. Willingale, P. M. Nilson, M. C. Kaluza, A. E. Dangor, et al., Phys. Plasmas. 17, doi: 10.1063/1.3377787 (2010).
  39. S. Bolaños, A. Sladkov, R. Smets, S. N. Chen, et al., J. Fuchs, Nat. Commun. 13, 6426 (2022).
  40. P. M. Nilson, L. Willingale, M. C. Kaluza, C. Kamperidis, et al., Phys. Rev. Lett. 97, 255001 (2006).
  41. B. K. F. Young, A. L. Osterheld, D. F. Price, R. Shepherd, et al., Rev. Sci. Instrum. 69, 4049–4053 (1998).
  42. W. Fox, A. Bhattacharjee, K. Germaschewski, Phys. Rev. Lett. 106, 215003 (2011).
  43. W. Fox, A. Bhattacharjee, K. Germaschewski, Phys. Plasmas. 19, doi: 10.1063/1.3694119 (2012).
  44. M. Øieroset, T. D. Phan, R. Ergun, N. Ahmadi, et al., Phys. Plasmas. 28, doi: 10.1063/5.0072182 (2021).
  45. D. I. Pontin, E. R. Priest Magnetic reconnection: MHD theory and modelling (Springer International Publishing; vol. 19, 2022).
  46. Y. Kuramitsu, T. Moritaka, Y. Sakawa, T. Morita, et al., Nat. Commun. 9, 5109 (2018).
  47. W. Liu, Q. Chen, V. Petrosian, Astrophys. J. 767, 168 (2013).
  48. G. Fiksel, W. Fox, A. Bhattacharjee, D. H. Barnak, P.- Y. Chang, K. Germaschewski, S. X. Hu, P. M. Nilson, Phys. Rev. Lett. 113, 105003 (2014).
  49. J. Zhong, Y. Li, X. Wang, J. Wang, Q. Dong, et al., Nat. Phys. 6, 984–987 (2010).
  50. W. Daughton, J. Scudder, H. Karimabadi, Phys. Plasmas. 13, doi: 10.1063/1.2218817 (2006).
  51. F. Ebrahimi, R. Raman, Phys. Rev. Lett. 114, 205003 (2015).
  52. K. Sakai, T. Moritaka, T. Morita, K. Tomita, et al., Sci. Rep. 12, 10921 (2022).
  53. Y. Kuramitsu, Y. Sakawa, J. N. Waugh, C. D. Gregory, T. Morita, S. Dono, H. Aoki, H. Tanji, B. Loupias, M. Koenig, N. Woolsey, H. Takabe, Astrophys. J. 707, L137–L141 (2009).
  54. P. M. Nilson, L. Willingale, M. C. Kaluza, C. Kamperidis, et al., Phys. Plasmas 15, doi: 10.1063/1.2966115 (2008).
  55. Q.-L. Dong, S.-J. Wang, Q.-M. Lu, C. Huang, et al., Phys. Rev. Lett. 108, 215001 (2012).
  56. C. K. Li, F. H. Séguin, J. A. Frenje, J. R. Rygg, R. D. Petrasso, R. P. J. Town, O. L. Landen, J. P. Knauer, V. A. Smalyuk, Phys. Rev. Lett. 99, 055001 (2007).
  57. X. X. Pei, J. Y. Zhong, Y. Sakawa, Z. Zhang, et al., Phys. Plasmas 23, doi: 10.1063/1.4944928 (2016).
  58. А.Chien, L. Gao, S. Zhang, H. Ji, E. G. Blackman, et al., Nat. Phys. 192, 19, 254–262 (2023).
  59. J. P. Geindre, P. Audebert, A. Rousse, J. C. Gauthier, A. Y. Faenov, T. A. Pikuz, S. A. Pikuz, T. A. Shelkovenko, Phys. Scr. 53, 645–647 (1996).
  60. А.Y. Faenov, S. A. Pikuz, A. I. Erko, B. A. Bryunetkin, et al., Phys. Scr. 50, 333–338 (1994).
  61. S. A. Pikuz, I. Y. Skobelev, M. A. Alkhimova, G. V. Pokrovskii, et al., JETP Lett. 105, 13–17 (2017).
  62. S. N. Ryazantsev, A. S. Martynenko, M. V Sedov, I. Y. Skobelev, et al., Plasma Phys. Control. Fusion. 64, 105016 (2022).
  63. M. A. Alkhimova, A. Y. Faenov, I. Y. Skobelev, T. A. Pikuz, et al., Opt. Express. 25, 29501 (2017).
  64. E. D. Filippov, K. F. Burdonov, T. A. Pikuz, I. Y. Skobelev, Symmetry (Basel) 14, 1–21 (2022).
  65. E. D. Filippov, S. S. Makarov, K. F. Burdonov, W. Yao, et al., Sci. Rep. 11, 8180 (2021).
  66. E. D. Filippov, M. Khan, A. Tentori, P. Gajdos, et al., Matter Radiat. Extrem. 8, 065602 (2023).
  67. V. M. Dyakin, A. I. Magunov, T. A. Pikuz, I. Y. Skobelev, A. Y. Faenov, J. Wolowski, E. Woryna, P. Parys, T. Pisarczyk, Quantum Electron. 25, 690–694 (1995).
  68. C. Y. Chien, J. C. Kieffer, O. Peyrusse, D. Gilles, M. Chaker, J. S. Coe, G. Mourou, Y. Beaudoin, Opt. Lett. 18, 1535 (1993).
  69. Z. Jiang, J. C. Kieffer, J. P. Matte, M. Chaker, O. Peyrusse, D. Gilles, G. Korn, A. Maksimchuk, S. Coe, G. Mourou, Phys. Plasmas 2, 1702–1711 (1995).
  70. V. A. Boiko, A. V. Vinogradov, S. A. Pikuz, I. Y. Skobelev, A. Y. Faenov, J. Sov. Laser Res. 6, 85–290 (1985).
  71. C. Kaur, S. Chaurasia, N. Singh, J. Pasley, S. Aggarwal, M. Mohan, Phys. Plasmas 26, doi: 10.1063/1.5051758 (2019).
  72. G. V. Brown, P. Beiersdorfer, D. A. Liedahl, K. Widmann, S. M. Kahn, E. J. Clothiaux, Astrophys. J. Suppl. Ser. 140, doi: 10.1086/339374 (2002).
  73. E. V. Marley, D. A. Liedahl, M. B. Schneider, R. F. Heeter, et al., Rev. Sci. Instrum. 89, 1–5 (2018).
  74. J. J. MacFarlane, I. E. Golovkin, P. R. Woodruff, D. R. Welch, B. V. Oliver, T. A. Melhorn, R. B. Campbell, T. A. Mehlhorn, R. B. Campbell Proc. Inert. Fusion Sci. Appl. (American Nucl. Soc. La Grange Park, IL, 1–4, 2003).
  75. E. D. Filippov, I. Y. Skobelev, G. Revet, S. N. Chen, B. Khiar, A. Ciardi, D. Khaghani, D. P. Higginson, S. A. Pikuz, J. Fuchs, Matter Radiat. Extrem. 4, doi: 10.1063/1.5124350 (2019).
  76. B. Khiar, G. Revet, A. Ciardi, K. Burdonov, et al., Phys. Rev. Lett. 123, 205001 (2019).

补充文件

附件文件
动作
1. JATS XML

版权所有 © The Russian Academy of Sciences, 2024