Prediction of geomagnetic storms associated with interplanetary coronal mass ejections

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Geomagnetic storms have a significant impact on the performance of technical systems both in space and on Earth. The sources of strong geomagnetic storms are most often interplanetary coronal mass ejections (ICMEs), generated by coronal mass ejections (CMEs) in the solar corona. The ICME forecast is based on regular optical observations of the Sun, which make it possible to detect CMEs at the formation stage. It is known that the intensity of geomagnetic storms correlates with the magnitude of the southern component of the magnetic field (Bz) of the ICME. However, it is not possible yet to predict the sign and magnitude of Bz from solar observations for the operational forecast of an arbitrary CME. Under these conditions, a preliminary forecast of the magnetic storm probability can be obtained under the assumption that the strength of the storm is related to the magnitude of the magnetic flux from the eruption region, observed as dimming. In this paper we examine the relationship between the integral magnetic flux from the dimming region and the probability that CMEs associated with them will cause geomagnetic storms, using a series of 37 eruptive events in 2010–2012. It is shown that there is a general trend toward an increase in the ICMEs geoefficiency with an increase in the magnitude of the magnetic flux from the dimming region. It has been demonstrated that the frequency of moderate and severe storms observation increases in cases of complex events associated with the interaction of CMEs with other solar wind streams in the heliosphere.

全文:

受限制的访问

作者简介

D. Rodkin

Lebedev Physical Institute, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: rodkindg@gmail.com
俄罗斯联邦, Moscow

V. Slemzin

Lebedev Physical Institute, Russian Academy of Sciences

Email: rodkindg@gmail.com
俄罗斯联邦, Moscow

参考

  1. I.G. Richardson, and H.V. Cane, J. Geophys. Res. 109, A09104 (2004).
  2. I.G. Richardson, and H.V. Cane, Solar Phys. 264, 189–237 (2010).
  3. Ю.И. Ермолаев, Н.С. Николаева, И.Г. Лодкина, М.Ю. Ермолаев, Космич. исслед. 47, 99–113 (2009).
  4. Ю.И. Ермолаев, И.Г. Лодкина, Н.С. Николаева, М.Ю. Ермолаев, Космич. исслед. 48, 499 (2010).
  5. Y.I. Yermolaev, N.S. Nikolaeva, I.G. Lodkina, M.Y. Yermolaev, J. Geophys. Res. 117, A00L07 (2012).
  6. Y.I. Yermolaev, I.G. Lodkina, N.S. Nikolaeva, M.Y. Yermolaev, J. Geophys. Res.: Space Physics. 118, 4760 (2013).
  7. T.V. Podladchikova, A.A. Petrukovich, Space Weather 10, S07001 (2012).
  8. Y. Tan, Q. Hu, Z. Wang, Q. Zhong, Space Weather 16, 406–416 (2018).
  9. I.S. Zhelavskaya, R. Vasile, Y.Y. Shprits, C. Stolle, J. Matzka, Space weather 17, 1461–1486 (2019).
  10. J. Wang, B. Luo, S. Liu, L. Shi, Front. Astron. Space Sci. 10 (2023).
  11. Y. Shugay, V. Kalegaev, K. Kaportseva, V. Slemzin, D. Rodkin, and V. Eremeev, Universe 8, 565 (2022).
  12. M. Temmer, C. Scolini, I.G. Richardson, S.G. Heinemann, et al., Advances in Space Research. In press (2023).
  13. D. Odstrcil, Adv. Space Res. 32, 497–506 (2003).
  14. S. Poedts, A. Lani, C. Scolini, C. Verbeke, et al., J. Space Weather Space Clim. 10, 57 (2020).
  15. L.F. Burlaga, S.P. Plunkett, O.C. St. Cyr, J. Geophys. Res. 107, 1266 (2002).
  16. L. Burlaga, D. Berdichevsky, N. Gopalswamy, R. Lepping, T. Zurbuchen, J. Geophys. Res. 108, 1425 (2003).
  17. N. Lugaz, M. Temmer, Y. Wang, C. J. Farrugia, Solar Phys. 292, 64 (2017).
  18. D. Rodkin, V. Slemzin, A. N. Zhukov, F. Goryaev, Y. Shugay, I. Veselovsky, Solar Phys. 293, 78 (2018).
  19. В.А. Слемзин, Ф.Ф. Горяев, Д.Г. Родькин, Ю.С. Шугай, С. В. Кузин, Физика плазмы 45, 867–902 (2019).
  20. Д.Г. Родькин, В.А. Слемзин, Ю.С. Шугай, Краткие сообщения по физике 47, 36–43 (2020).
  21. R.A. Harrison, P. Bryans, G.M. Simnett, and M. Lyons, Astron. and Astrophys. 400, 1071–1083 (2003).
  22. K. Dissauer, A.M. Veronig, M. Temmer, and T. Podladchikova, Astrophys. J. 874, 123 (2019).
  23. K. Dissauer. A.M. Veronig. M. Temmer. and T. Podladchikova, K. Vanninathan, Astrophys. J. 863. 169 (2018).
  24. G. Chikunova, K. Dissauer, T. Podladchikova, A.M. Veronig, Astrophys. J. 896. 17 (2020).
  25. I.M. Chertok, V.V. Grechnev, A.V. Belov, A.A. Abunin, Solar Phys. 282, 175–199 (2013).
  26. I.M. Chertok, M.A. Abunina, A.A. Abunin, A.V. Belov, V.V. Grechnev, Solar Phys. 290, 627–633 (2015).
  27. I.M. Chertok, V.V. Grechnev, A.A. Abunin, Solar Phys. 292, 62 (2017).
  28. S. Pal, D. Nandy, E. Kilpua, Astron. and Astrophys. 665, A110 (2022).
  29. K. Dissauer. A. M. Veronig. M. Temmer, T. Podladchikova, K. Vanninathan, Astrophys. J. 855, 137 (2018).
  30. P. J. Cargill, Solar Phys. 221, 135 (2004).
  31. B. Vršnak, T. Žic, D. Vrbanec, M. Temmer, T. Rollett, C. Möstl, A. Veronig, J. Calogovic, M. Dumbovic, S. Lulic, Y.-J. Moon, and A. Shanmugaraju, Solar Phys. 285, 295 (2013).
  32. A. Vourlidas, S. Patsourakos, and N. P. Savani, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 377, 20180096 (2019).
  33. M. Dumbovic, J. Calogovic, K. Martinic, B. Vrsnak, D. Sudar, M. Temmer, and A. Veronig, Frontiers in Astronomy and Space Sciences. 8, 58 (2021).
  34. T. Zurbuchen, I.G. Richardson, Space Sci. Rev. 123, 31–43 (2006).
  35. J. Čalogović, M. Dumbović, D. Sudar, B. Vršnak, K. Martinić, M. Temmer, and A. Veronig, Solar Phys. 296, 114 (2021).
  36. Д.Г. Родькин, В.А. Слемзин, Ю.С. Шугай, Астрон. журн. 100, 1–8 (2023).
  37. P. Riley, M.L. Mays, J. Andries, T. Amerstorfer, et al., Space Weather 16, 1245–1260 (2018).
  38. N. Lugaz, C.J. Farrugia, R.M. Winslow, N. Al-Haddad, E.K. J Kilpua, P. Riley, J. Geophys. Res.: Space Physics 121, 10861–10879 (2016).

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Left: graph of the dependence of the maximum value of the magnetic field modulus in the ICME for 37 events on the total magnetic flux from the dimming region; right: dependence of the minimum value of the z-component of the magnetic field in the ICME for 37 events on the total magnetic flux from the dimming region. Triangles highlight the ICMEs that are part of complexes, stars highlight single events. KK is the correlation coefficient.

下载 (44KB)
3. Fig. 2. Left: graph of the dependence of the minimum value of the Dst index for 37 events on the total magnetic flux from the dimming region; center: dependence of the maximum value of the Ap index on the total magnetic flux from the dimming region; right: dependence of the maximum value of the Kp index on the total magnetic flux from the dimming region. Triangles highlight the ICMEs that are part of complexes, stars highlight single events.

下载 (49KB)

版权所有 © The Russian Academy of Sciences, 2024