Parameters of star formation regions in galaxies NGC 3963 and NGC 7292

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Results of a study of physical parameters of stellar population in star formation regions in galaxies with signs of peculiarity NGC 3963 and NGC 7292 are presented. The study was carried out based on the analysis of photometric (UBVRI bands), Hα and spectroscopic data obtained by the authors, using evolutionary models of stellar population. Among 157 star formation regions identified in galaxies, the young stellar population mass estimates were obtained for 16 of them and the age estimates were obtained for 15 ones. The age of star formation regions clearly correlates with the presence of emission in the Hα line: H II regions in galaxies are younger than 6–8 Myr, and the regions without gas emission are older. The studied objects are included in the version 3 of our catalogue of photometric, physical and chemical parameters of star formation regions, which includes 1667 objects in 21 galaxies. Key aspects of the used technique to estimate the physical parameters and different relations between observational and physical parameters of the young stellar population in star formation regions are discussed.

全文:

受限制的访问

作者简介

А. Gusev

Lomonosov Moscow State University, Sternberg Astronomical Institute

编辑信件的主要联系方式.
Email: gusev@sai.msu.ru
俄罗斯联邦, Moscow

F. Sakhibov

University of Applied Sciences, Technische Hochschule Mittelhessen

Email: gusev@sai.msu.ru
德国, Friedberg

A. Moiseev

Lomonosov Moscow State University, Sternberg Astronomical Institute; Special Astrophysical Observatory, Russian Academy of Sciences

Email: gusev@sai.msu.ru
俄罗斯联邦, Moscow; Nizhnii Arkhyz

V. Kostiuk

Lomonosov Moscow State University, Sternberg Astronomical Institute

Email: gusev@sai.msu.ru
俄罗斯联邦, Moscow

D. Oparin

Special Astrophysical Observatory, Russian Academy of Sciences

Email: gusev@sai.msu.ru
俄罗斯联邦, Nizhnii Arkhyz

参考

  1. Y. N. Efremov, Sites of star formation in galaxies: star complexes and spiral arms (Moscow: Nauka, 1989).
  2. B. G. Elmegreen, Astrophys. J. 433, 39 (1994).
  3. Y. N. Efremov, Astron. J. 110, 2757 (1995).
  4. B. G. Elmegreen and Y. N. Efremov, Astrophys. J. 466, 802 (1996).
  5. Y. N. Efremov and B. G. Elmegreen, Monthly Not. Roy. Astron. Soc. 299(2), 588 (1998), arXiv:astro-ph/9805259.
  6. M. C. Odekon, Astrophys. J. 681(2), 1248 (2008).
  7. B. G. Elmegreen, The Galaxy Disk in Cosmological Context, IAU Symposium 254, edited by J. Andersen, B. Nordström, and J. Bland-Hawthorn, p. 289 (2009), arXiv:0810.5406 [astro-ph].
  8. R. de la Fuente Marcos and C. de la Fuente Marcos, Astrophys. J. 700(1), 436 (2009), arXiv:0905.1889 [astro-ph.GA].
  9. S. F. Portegies Zwart, S. L. W. McMillan, and M. Gieles, Ann. Rev. Astron. Astrophys. 48, 431 (2010), arXiv:1002.1961 [astro-ph.GA].
  10. I. N. Efremov, G. R. Ivanov, and N. S. Nikolov, Astrophys. Space Sci. 135(1), 119 (1987).
  11. G. R. Ivanov, Astrophys. Space Sci. 178(2), 227 (1991).
  12. B. C. Whitmore, R. Chandar, H. Kim, C. Kaleida, et al., Astrophys. J. 729(2), id. 78 (2011), arXiv:1103.4026 [astro-ph.GA].
  13. K. Hollyhead, N. Bastian, A. Adamo, E. Silva-Villa, J. Dale, J. E. Ryon, and Z. Gazak, Monthly Not. Roy. Astron. Soc. 449(1), 1106 (2015), arXiv:1502.03823 [astro-ph.GA].
  14. J. Kim, M. Chevance, J. M. D. Kruijssen, A. Schruba, et al., Monthly Not. Roy. Astron. Soc. 504(1), 487 (2021), arXiv:2012.00019 [astro-ph.GA].
  15. A. E. Piskunov, N. V. Kharchenko, E. Schilbach, S. Röser, R. D. Scholz, and H. Zinnecker, Astron. and Astrophys. 525, id. A122 (2011), arXiv:1010.2309 [astro-ph.GA].
  16. M. Cerviño, New Astron. Rev. 57(5), 123 (2013), arXiv:1312.0015 [astro-ph.IM].
  17. A. S. Gusev, F. Sakhibov, A. E. Piskunov, N. V. Kharchenko, et al., Monthly Not. Roy. Astron. Soc. 457(3), 3334 (2016), arXiv1601.07470 [astro-ph.GA].
  18. A. S. Gusev, E. V. Shimanovskaya, N. I. Shatsky, F. Sakhibov, A. E. Piskunov, and N. V. Kharchenko, Open Astronomy 27(1), 98 (2018).
  19. A. S. Gusev, F. Sakhibov, O. V. Egorov, V. S. Kostiuk, and E. V. Shimanovskaya, Monthly Not. Roy. Astron. Soc. 525(1), 742 (2023), arXiv:2307.06237 [astro-ph.GA].
  20. D. Calzetti, J. C. Lee, E. Sabbi, A. Adamo, et al., Astron. J. 149(2), id. 51 (2015), arXiv:1410.7456 [astro-ph.GA].
  21. E. Emsellem, E. Schinnerer, F. Santoro, F. Belfiore, et al., Astron. and Astrophys. 659, id. A191 (2022), arXiv:2110.03708 [astro-ph.GA].
  22. J. C. Lee, B. C. Whitmore, D. A. Thilker, S. Deger, et al., Astrophys. J. Suppl. 258(1), id. 10 (2022), arXiv:2101.02855 [astro-ph.GA].
  23. A. Adamo, J. E. Ryon, M. Messa, H. Kim, et al., Astrophys. J. 841(2), 131 (2017), arXiv:1705.01588 [astro-ph.GA].
  24. B. C. Whitmore, J. C. Lee, R. Chandar, D. A. Thilker, et al., Monthly Not. Roy. Astron. Soc. 506(4), 5294 (2021), arXiv:2107.13049 [astro-ph.GA].
  25. D. A. Thilker, B. C. Whitmore, J. C. Lee, S. Deger, et al., Monthly Not. Roy. Astron. Soc. 509(3), 4094 (2022), arXiv:2106.13366 [astro-ph.GA].
  26. K. L. Larson, J. C. Lee, D. A. Thilker, B. C. Whitmore, et al., Monthly Not. Roy. Astron. Soc. 523(4), 6061 (2023), arXiv:2212.11425 [astro-ph.GA].
  27. B. Groves, K. Kreckel, F. Santoro, F. Belfiore, et al., Monthly Not. Roy. Astron. Soc. 520(4), 4902 (2023), arXiv:2301.03811 [astro-ph.GA].
  28. J. A. Turner, D. A. Dale, J. C. Lee, M. Boquien, et al., Monthly Not. Roy. Astron. Soc. 502(1), 1366 (2021), arXiv:2101.02134 [astro-ph.GA].
  29. F. Scheuermann, K. Kreckel, A. T. Barnes, F. Belfiore, et al., Monthly Not. Roy. Astron. Soc. 522(2), 2369 (2023), arXiv:2303.12101 [astro-ph.GA].
  30. A. S. Gusev and A. V. Dodin, Monthly Not. Roy. Astron. Soc. 505(2), 2009 (2021), arXiv:2105.06203 [astro-ph.GA].
  31. G. A. van Moorsel, Astron. and Astrophys. Suppl. Ser. 53, 271 (1983).
  32. A. S. Gusev, A. V. Moiseev, and S. G. Zheltoukhov, Astrophys. Bull. 78(3), 293 (2023), arXiv:2309.02360 [astro-ph.GA].
  33. S. A. Potanin, A. A. Belinski, A. V. Dodin, S. G. Zheltoukhov, et al., Astron. Letters 46(12), 836 (2020), arXiv:2011.03061 [astro-ph.IM].
  34. B. P. Artamonov, V. V. Bruevich, A. S. Gusev, O. V. Ezhkova, et al., Astron. Rep. 54(11), 1019 (2010).
  35. V. V. Bruevich, A. S. Gusev, and S. A. Guslyakova, Astron. Rep. 54(5), 375 (2010).
  36. A. U. Landolt, Astron. J. 104, 340 (1992).
  37. A. U. Landolt, Astron. J. 146(5), id. 131 (2013).
  38. J. L. Clem and A. U. Landolt, Astron. J. 152(4), id. 91 (2016).
  39. A. Moiseev, A. Perepelitsyn, and D. Oparin, Exp. Astron. 50(2–3), 199 (2020), arXiv:2005.14598 [astro-ph.IM].
  40. P. A. James, N. S. Shane, J. E. Beckman, A. Cardwell, et al., Astron. and Astrophys. 414, 23 (2004), arXiv:astro-ph/0311030.
  41. G. Bertelli, A. Bressan, C. Chiosi, F. Fagotto, and E. Nasi, Astron. and Astrophys. Suppl. Ser. 106, 275 (1994).
  42. A. Bressan, P. Marigo, L. Girardi, B. Salasnich, C. Dal Cero, S. Rubele, and A. Nanni, Monthly Not. Roy. Astron. Soc. 427(1), 127 (2012), arXiv:1208.4498 [astro-ph.SR].
  43. J. Tang, A. Bressan, P. Rosenfield, A. Slemer, P. Marigo, L. Girardi, and L. Bianchi, Monthly Not. Roy. Astron. Soc. 445(4), 4287 (2014), arXiv:1410.1745 [astro-ph.SR].
  44. B. C. Whitmore, R. Chandar, F. Schweizer, B. Rothberg, et al., Astron. J. 140(1), 75 (2010), arXiv:1005.0629 [astro-ph.EP].
  45. L. S. Pilyugin and E. K. Grebel, Monthly Not. Roy. Astron. Soc. 457(4), 3678 (2016), arXiv:1601.08217 [astro-ph.GA].
  46. M. Pettini and B. E. J. Pagel, Monthly Not. Roy. Astron. Soc. 348(3), L59 (2004), arXiv:astro-ph/0401128.
  47. L. S. Pilyugin and L. Mattsson, Monthly Not. Roy. Astron. Soc. 412(2), 1145 (2011), arXiv:1011.1431 [astro-ph.CO].
  48. E. Péerez-Montero, Monthly Not. Roy. Astron. Soc. 441(3), 2663 (2014), arXiv:1404.3936 [astro-ph.GA].
  49. M. G. Richer and M. L. McCall, Astrophys. J. 445, 642 (1995).
  50. L. Hernández-Martnez, M. Peña, L. Carigi, and J. Garca-Rojas, Astron. and Astrophys. 505(3), 1027 (2009), arXiv:0906.4402 [astro-ph.CO].
  51. N. V. Kharchenko, A. E. Piskunov, S. Röser, E. Schilbach, R.-D. Scholz, and H. Zinnecker, Astron. and Astrophys. 504(2), 681 (2009).
  52. A. S. Gusev and E. V. Shimanovskaya, Monthly Not. Roy. Astron. Soc. 488(3), 3045 (2019), arXiv:1907.02934 [astro-ph.GA].
  53. M. V. F. Copetti, M. G. Pastoriza, and H. A. Dottori, Astron. and Astrophys. 156(1–2), 111 (1986).
  54. C. Morisset, G. Delgado-Inglada, S. F. Sánchez, L. Galbany, et al., Astron. and Astrophys. 594, id. A37 (2016), arXiv:1606.01146 [astro-ph.GA].
  55. K. Kreckel, O. V. Egorov, F. Belfiore, B. Groves, et al., Astron. and Astrophys. 667, id. A16 (2022), arXiv:2207.10364 [astro-ph.GA].
  56. M. Gieles and S. F. Portegies Zwart, Monthly Not. Roy. Astron. Soc. 410(1), L6 (2011), arXiv:1010.1720 [astro-ph.GA].
  57. R. B. Larson, Monthly Not. Roy. Astron. Soc. 194, 809 (1981).
  58. N. Bastian, M. Gieles, Y. N. Efremov, and H. J. G. L. M. Lamers, Astron. and Astrophys. 443(1), 79 (2005), arXiv:astro-ph/0508110.
  59. A. Adamo, G. Östlin, N. Bastian, E. Zackrisson, R. C. Livermore, and L. Guaita, Astrophys. J. 766(2), id. 105 (2013), arXiv:1302.2149 [astro-ph.CO].
  60. M. Y. Grudić, J. M. D. Kruijssen, C.-A. Faucher-Giguére, P. F. Hopkins, X. Ma, E. Quataert, and M. Boylan-Kolchin, Monthly Not. Roy. Astron. Soc. 506(3), 3239 (2021), arXiv:2008.04453 [astro-ph.GA].
  61. A. D. Bolatto, A. K. Leroy, E. Rosolowsky, F. Walter, and L. Blitz, Astrophys. J. 686(2), 948 (2008), arXiv:0807.0009 [astro-ph].
  62. L. H. Wei, E. Keto, and L. C. Ho, Astrophys. J. 750(2), id. 136 (2012), arXiv:1203.1327 [astro-ph.CO].
  63. E. Rosolowsky, A. Hughes, A. K. Leroy, J. Sun, et al., Monthly Not. Roy. Astron. Soc. 502(1), 1218 (2021), arXiv:2101.04697 [astro-ph.GA].
  64. D. A. Gouliermis, B. G. Elmegreen, D. M. Elmegreen, D. Calzetti, et al., Monthly Not. Roy. Astron. Soc. 468(1), 509 (2017), arXiv:1702.06006 [astro-ph.GA].

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. B-band images of galaxies NGC 3963 (left) and NGC 7292 (right) on a logarithmic intensity scale. Small red circles mark identified NEOs studied photometrically, blue circles mark NEOs studied spectroscopically in [30], and large blue circles mark NEOs with mass (age) estimates obtained in this paper. The dimensions of the NGC 3963 image are 170.5' × 170.5', which corresponds to a linear size of 40.67 kpc; the dimensions of the NGC 7292 image are 146.7' × 146.7' (4.85 kpc). North is at the top, east is at the left. The centers of the images correspond to the centers of the galaxies.

下载 (78KB)
3. Fig. 2. Examples of evolutionary sequences of the standard mode of SSP models of the Padua library of stellar evolutionary tracks CMD version 2.8 [41, 42, 43] (continuously populated NFM) for stellar systems with metallicity Z = 0.012 and masses (blue curves) and (black curves) and the discrete mode of models (randomly populated NFM) for a stellar system with Z = 0.012 and masses (red circles connected by dashed lines), (blue crosses connected by dashed lines), (green stars connected by dashed lines) and (purple oblique crosses connected by dashed lines). The age range varies from 1 million to 1 billion years. Shown are the changes in the absolute magnitude of M(B) and the U–B and B–V color indices with age (left), as well as the color-magnitude and two-color diagrams (right) for the model evolutionary sequences. The standard mode color indices of the SSP models are mass-independent (blue and black curves are superimposed on the corresponding graphs).

下载 (489KB)
4. Fig. 3. The same as in Fig. 2, but for evolutionary sequences of different metallicities. Shown are examples of evolutionary sequences of the standard mode of models for stellar systems with mass and Z = 0.008 (red curves), Z = 0.012 (black curves), and Z = 0.018 (blue curves), as well as of the discrete mode of models for systems with mass and Z = 0.008 (red circles connected by dashed lines), Z = 0.012 (black crosses connected by dashed lines), and Z = 0.018 (blue diagonal crosses connected by dotted lines).

下载 (422KB)
5. Fig. 4. The same as in Fig. 2, but for four randomly generated evolutionary sequences of the discrete mode of SSP models for systems with mass and Z = 0.012 in the age range from 1 to 45 million years.

下载 (320KB)
6. Fig. 5. Luminosity function for the full sample of NEOs in the catalogue (black histogram), regions in NGC 3963 (red) and NGC 7292 (blue).

下载 (148KB)
7. Fig. 6. Distribution of NEOs by absolute (left) and R25-normalized (right) galactocentric distances. The notations are the same as in Fig. 5.

下载 (215KB)
8. Fig. 7. Distribution of NEO sizes for objects in galaxies from the catalog located closer than 30 Mpc (green histogram) and further than 30 Mpc from us (black histogram). Other designations are the same as in Fig. 5.

下载 (74KB)
9. Fig. 8. Distribution of NEOs by metallicity (top; notations are the same as in Fig. 5) and radial distribution of NEOs by Z (bottom). Small black circles in the bottom graph are the full sample of NEOs excluding objects whose metallicity was determined using the H II-ChiMistry method, red circles are NEOs in NGC 3963, and blue circles are NEOs in NGC 7292. The corresponding colors show the average errors of Z measurements in the NEO samples.

下载 (162KB)
10. Fig. 9. Distribution of NEOs by the morphology of gas and star emission (see Section 3) for the full sample of NEOs in the catalog galaxies for which there are observational data in the Hα line (classes 0–2; black histogram), NEOs in NGC 3963 (red) and in NGC 7292 (blue).

下载 (197KB)
11. Fig. 10. Two-color diagrams , and . Shown are NEOs with color indices corrected for galactic extinction AG and extinction caused by the disk tilt of galaxies, Ain. Green dots show NEOs from the catalogue of Gusev et al. [19], red circles show NEOs in NGC 3963, and blue circles show NEOs in NGC 7292. The average errors of color index measurements are shown by error bars of the corresponding color. Black curves are evolutionary tracks of a stellar system with a continuous IMF and Z = 0.008 in the age range t from 1 to 100 Myr; black crosses connected by a dotted line demonstrate an example of the evolutionary sequence of a stellar system with a randomly populated IMF with a mass and Z = 0.008 in the t range from 1 to 100 Myr. Black thick segments in the corners of the diagrams are parallel to the reddening vector.

下载 (335KB)
12. Fig. 11. Same as Fig. 10, but for the "true" color indices of the stellar population of the NEO, corrected for the gas contribution and absorption calculated using the Balmer decrement. The notations are the same as in Fig. 10.

下载 (329KB)
13. Fig. 12. The color-luminosity diagram for the “true” absolute stellar magnitudes M(B) and the color indices B–V of the stellar population of open star clusters in galaxies. The purple dots show the open star clusters of our Galaxy from the catalog [51]. The blue crosses connected by a dotted line show an example of the evolutionary sequence of a stellar system with a randomly populated IMF with a mass and Z = 0.018 in the t range from 1 million to 1 billion years. The black curves indicate the evolutionary tracks of a stellar system with a continuous IMF, masses (upper curve) and (lower curve) and Z = 0.008 in the t range from 1 to 100 million years. The other designations are the same as in Fig. 10.

下载 (133KB)
14. Fig. 13. Distribution of NEOs by mass for the full sample of catalog objects (black histogram), class 2 NEOs in NGC 3963 (red), class 0 NEOs in NGC 3963 (green), class 2 NEOs in NGC 7292 (blue), and class 0 NEOs in NGC 7292 (light blue).

下载 (67KB)
15. Fig. 14. Distribution of OZO by age. The designations are the same as in Fig. 13.

下载 (66KB)
16. Fig. 15. Location of NEOs of different ages and evolutionary classes in the galaxies NGC 3963 (left) and NGC 7292 (right). Large circles indicate NEOs with measured age estimates, small circles indicate other NEOs of classes 1 and 2. Purple numbers correspond to NEO numbers from Table 4.

下载 (354KB)
17. Fig. 16. The relationship between the age of the stellar population of NEOs and the R – Hα index. Small circles are objects from the catalog [19], large circles are objects in NGC 3963 and NGC 7292. NEOs with an age estimate error of dex are shown in black, and those with an age estimate error greater than 0.2 dex are shown in red.

下载 (70KB)
18. Fig. 17. Size-age relationship for NEOs from the full catalog sample (small circles) and regions in NGC 3963 and NGC 7292 (large black circles). Multicomponent NEOs (binaries, triples, etc.) are not shown in the graph.

下载 (76KB)
19. Fig. 18. The mass-size dependence for HMCs (red dots from [61, 62, 63]) and NGCs (green circles [59], purple parallelogram [58], the area inside the blue triangle is taken from [64]). Blue circles are isolated NGCs from our catalogue [19] with ; black circles are NGCs in NGC 3963 and NGC 7292. The black solid line is the dependence for young massive star clusters according to [59]; the black dotted line is the dependence for HMCs according to [61, 59].

下载 (186KB)

版权所有 © The Russian Academy of Sciences, 2024