Proton fluxes of solar-type stars with planetary systems

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The previously developed method for estimating of the parameters of proton fluxes from flare energies for the Sun was applied to data on the flare activity of solar-type stars. The results obtained will be used to assess the radiation situation in a stellar system containing exoplanets. In our analysis we used catalog data on flares of solar-type stars obtained from observations with Kepler telescope. The empirical relations between the energy of X-ray flares and the proton flux for the Sun was extended to the case of stellar flares, similar to what was done previously in the case of coronal mass ejections (CMEs). The method used has limitations caused by the extension of the solar analogy to other stars as well as the uncertainties that arise when applying scaling methods. It was found that the characteristic values of the proton flux for solar-type stars can be one order of magnitude higher than the estimates for the Sun. Prospects for the development of alternative methods for estimating proton fluxes in the vicinity of stars of late spectral types are discussed (for example, by studying the behavior of Si IV and He II emission lines in the far ultraviolet range).

Sobre autores

I. Savanov

Institute of Astronomy of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: isavanov@inasan.rssi.ru
Rússia, Moscow

Bibliografia

  1. V. S. Airapetian, R. Barnes, O. Cohen, G. A. Collinson, et al., Intern. J. Astrobiology 19(2), 136 (2020).
  2. A. Papaioannou, I. Sandberg, A. Anastasiadis, A. Kouloumvakos, et al., J. Space Weath. and Space Climat 6, id. A42 (2016).
  3. D. V. Reames, Space Sci. Rev. 217(6), id. 72 (2021).
  4. E. W. Cliver, C. J. Schrijver, K. Shibata, and I. G. Usoskin, Liv. Rev. Solar Physics 19(1), id. 2 (2022).
  5. V. Kurt, A. Belov, H. Mavromichalaki, and M. Gerontidou, Ann. Geophysicae 22(6), 2255 (2004).
  6. I. G. Usoskin, B. Kromer, F. Ludlow, J. Beer, M. Friedrich, G. A. Kovaltsov, S. K. Solanki, and L. Wacker, Astron. and Astrophys. 552, id. L3 (2013).
  7. A. Papaioannou, K. Herbst, T. Ramm, E. W. Cliver, D. Lario, and A. M. Veronig, Astron. and Astrophys. 671, id. A66 (2023).
  8. A. N. Aarnio, S. P. Matt, and K. G. Stassun, 760(1), id. 9 (2012).
  9. M. N. Günther, Z. Zhan, S. Seager, P. B. Rimmer, et al., Astron. J. 159(2), id. 60 (2020).
  10. K. Namekata, T. Sakaue, K. Watanabe, A. Asai, et al., 851(2), id. 91 (2017).
  11. S. Okamoto, Y. Notsu, H. Maehara, K. Namekata, S. Honda, K. Ikuta, D. Nogami, and K. Shibata, 906(2), id. 72 (2021).
  12. A. Struminsky and A. Sadovski, in Stars: From Collapse to Collapse, Proc. of a conference held at Special Astrophysical Observatory, Nizhny Arkhyz, Russia 3–7 October 2016; edited by Yu. Yu. Balega, D. O. Kudryavtsev, I. I. Romanyuk, and I. A. Yakunin (San Francisco: Astronomical Society of the Pacific, 2017), 510, 105 (2017).
  13. L. I. Miroshnichenko, Physics Uspekhi 61(4), 323 (2018).
  14. I. S. Savanov, Astron. Letters 46(12), 831 (2020).
  15. A. Youngblood, K. France, R. O. P. Loyd, A. Brown, et al., 843(1), id. 31 (2017).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © The Russian Academy of Sciences, 2024